首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermally unstable compound [Hg[P(C(6)F(5))(2)](2)] was obtained from the reaction of mercury cyanide and bis(pentafluorophenyl)phosphane in DMF solution and characterized by multinuclear NMR spectroscopy. The thermally stable trinuclear compounds [Hg[(mu-P(CF(3))(2))W(CO)(5)](2)] and [Hg[(mu-P(C(6)F(5))(2))W(CO)(5)](2)] are isolated and completely characterized. The higher order NMR spectra exhibiting multinuclear satellite systems have been sufficiently analyzed. [Hg[(mu-P(CF(3))(2))W(CO)(5)](2)].2DMF crystallizes in the monoclinic space group C2/c with a = 2366.2(3) pm, b = 1046.9(1) pm, c = 104.0(1) pm, and beta = 104.01(1) degrees. Structural, NMR spectroscopic, and vibrational data prove a weak coordination of the two DMF molecules. Structural, vibrational, and NMR spectroscopic evidence is given for a successive weakening of the pi back-bonding effect of the W-P bond in the order [W(CO)(5)PH(R(f))(2)], [Hg[(mu-P(R(f))(2))W(CO)(5)](2)], and [W[P(R(f))(2)](CO)(5)](-) with R(f) = C(6)F(5) and CF(3). The pi back-bonding effect of the W-C bonds increases vice versa.  相似文献   

2.
The molecular geometries of the complexes trans-[M(18-crown-6)(C5HO2F6)2] (where M = Ca, Sr, Ba (I), Zn, Cd, Sn, Pb (II), Fe, Co, Eu, and Yb) were modeled by the molecular mechanics method with fixed R(M-O) distances. The shielding degrees of the central metal atom in these complexes were calculated and the number and types of possible intermolecular contacts between their molecules in the structure were determined. The intermolecular interactions involve identical fragments (atoms) of the ligands: the CF3 groups of the hexafluoroacetylacetonate ligands and the methylene fragments of the crown ether. Previously unknown complex II and complex I were synthesized according to an original procedure. The structure and thermochemical properties (including sublimation by the Knudsen method) of complex II were studied. As in complex I, the metal cation in complex II is in the cavity of the macrocycle of the crown ether; the hexafluoroacetylacetonate ligands are trans relative to that cation. The presumed similarity of complexes I and II in thermochemical characteristics was confirmed experimentally. Both the complexes melt in close temperature intervals and sublime at the same temperature (~10?2 mm Hg) without decomposition. The enthalpies of sublimation of complexes I and II, as well as the entropy contributions to their volatilities, are equal to within the experimental error.  相似文献   

3.
The bis(trifluoromethyl)phosphanide ion, P(CF(3))(2)(-), decomposes slowly above -30 degrees C in CH(2)Cl(2) and THF solution. An increase of the thermal stability of the P(CF(3))(2)(-) moiety is observed if excess CS(2) is added. The P(CF(3))(2)(-) moiety is stabilized because of the formation of the bis(trifluoromethyl)phosphanodithioformate anion. Solutions of a [P(CF(3))(2)CS(2)](-) salt still act as a source of P(CF(3))(2)(-), even in the presence of excess of CS(2). The stable compound [18-crown-6-K][P(CF(3))(2)CS(2)] was characterized by multinuclear NMR spectroscopy, elemental analysis, and vibrational spectroscopy in combination with quantum chemical calculations. The thermally unstable P(C(6)F(5))(2)(-) ion decomposes even at -78 degrees C in solution giving polymeric material. The intermediate formation of the bis(pentafluorophenyl)phosphanide anion in the presence of excess of CS(2) allows the isolation of [18-crown-6-K][P(C(6)F(5))(2)CS(2)]. The novel compound crystallizes with one solvent molecule CH(2)Cl(2) in the monoclinic space group P2(1)/n with a = 1151.8(1) pm, b = 1498.1(2) pm, c = 2018.2(2) pm, beta = 102.58(1) degrees, and Z = 4. Optimized geometric parameters of the [P(C(6)F(5))(2)CS(2)](-) ion at the B3PW91/6-311G(d) level of theory are in excellent agreement with the experimental values.  相似文献   

4.
The first example of a mononuclear diphosphanidoargentate, bis[bis(trifluoromethyl)phosphanido]argentate, [Ag[P(CF(3))(2)](2)](-), is obtained via the reaction of HP(CF(3))(2) with [Ag(CN)(2)](-) and isolated as its [K(18-crown-6)] salt. When the cyclic phosphane (PCF(3))(4) is reacted with a slight excess of [K(18-crown-6)][Ag[P(CF(3))(2)](2)], selective insertion of one PCF(3) unit into each silver phosphorus bond is observed, which on the basis of NMR spectroscopic evidence suggests the [Ag[P(CF(3))P(CF(3))(2)](2)](-) ion. On treatment of the phosphane complexes [M(CO)(5)PH(CF(3))(2)] (M = Cr, W) with [K(18-crown-6)][Ag(CN)(2)], the analogous trinuclear argentates, [Ag[(micro-P(CF(3))(2))M(CO)(5)](2)](-), are formed. The chromium compound [K(18-crown-6)][Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)] crystallizes in a noncentrosymmetric space group Fdd2 (No. 43), a = 2970.2(6) pm, b = 1584.5(3) pm, c = 1787.0(4), V = 8.410(3) nm(3), Z = 8. The C(2) symmetric anion, [Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)](-), shows a nearly linear arrangement of the P-Ag-P unit. Although the bis(pentafluorophenyl)phosphanido compound [Ag[P(C(6)F(5))(2)](2)](-) has not been obtained so far, the synthesis of its trinuclear counterpart, [K(18-crown-6)][Ag[(micro-P(C(6)F(5))(2))W(CO)(5)](2)], was successful.  相似文献   

5.
The reaction of [PPN](2)[Re(6)C(CO)(19)] with Mo(CO)(6) and Ru(3)(CO)(12) under sunlamp irradiation provided the new mixed-metal clusters [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] and [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)], which were isolated in yields of 85% and 61%, respectively. The compound [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] crystallizes in the monoclinic space group P2(1)/c with a = 20.190 (7) ?, b = 16.489 (7) ?, c = 27.778 (7) ?, beta = 101.48 (2) degrees, and Z = 4 (at T = -75 degrees C). The cluster anion is composed of a Re(6)C octahedral core with a face capped by a Mo(CO)(4) fragment. There are three terminal carbonyl ligands coordinated to each rhenium atom. The four carbonyl ligands on the molybdenum center are essentially terminal, with one pair of carbonyl ligands (C72-O72 and C74-O74) subtending a relatively large angle at molybdenum (C72-Mo-C74 = 147.2(9) degrees ), whereas the remaining pair of carbonyl ligands (C71-O71 and C73-O73) subtend a much smaller angle (C71-Mo-C73 = 100.5(9) degrees ). The (13)C NMR spectrum of (13)CO-enriched [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] shows signals for four sets of carbonyl ligands at -40 degrees C, consistent with the solid state structure, but the carbonyl ligands undergo complete scrambling at ambient temperature. The (13)C NMR spectrum of (13)CO-enriched [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)] at 20 degrees C is consistent with the expected structure of an octahedral Re(6)C(CO)(18) core capped by a Ru(CO)(3) fragment. The visible spectrum of [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] shows a broad, strong band at 670 nm (epsilon = 8100), whereas all of the absorptions of [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)] are at higher energy. An irreversible oxidation wave with E(p) at 0.34 V is observed for [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)], whereas two quasi-reversible oxidation waves with E(1/2) values of 0.21 and 0.61 V (vs Ag/AgCl) are observed for [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)]. The molybdenum cap in [Re(6)C(CO)(18)Mo(CO(4))](2-) is cleaved by heating in donor solvents, and by treatment with H(2), to give largely [H(2)Re(6)C(CO)(18)](2-). In contrast, [Re(6)C(CO)(18)Ru(CO)(3)](2-) shows no tendency to react under similar conditions.  相似文献   

6.
7.
8.
The synthesis of the intramolecularly coordinated heteroleptic organostannylene tungsten pentacarbonyl complexes 4-tBu-2,6-[P(O)(OiPr)(2)](2)C(6)H(2)Sn(X)W(CO)(5) (1, X = Cl; 2, X = F; 3, X = PPh(2)) and of 4-tBu-2,6-[P(O)(OiPr)(2)](2)C(6)H(2)Sn[W(CO)(5)]PPh(2)[W(CO)(5)], 4, are reported. UV-irradiation of compound 4 in tetrahydrofurane serendipitously gave the bis(organostannylene) tungsten tetracarbonyl complex cyclo-O(2)W[OSn(R)](2)W(CO)(4) (R = 4-tBu-2,6-[P(O)(OiPr)(2)](2)C(6)H(2)), 5, that contains an unprecedented W(0)-Sn-O-W(vi) bond sequence. The compounds 1-5 were characterized by means of single crystal X-ray diffraction analysis, (1)H, (13)C, (19)F, (31)P, (119)Sn NMR, and IR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and elemental analysis. Compound 4 features a hindered rotation about the Sn-P bond.  相似文献   

9.
Syntheses and Crystal Structures of the Rare-Earth Complexes [LaI2(THF)5]+I3?, [SmCl3(THF)4], [ErCl2(THF)5]+ [ErCl4(THF)2]?, [ErCl3(DME)2], and [Na(18-Crown-6)(THF)2]+[YbBr4(THF)2]? [LaI2(THF)5]+I3? ( 1 ) is obtained as red crystals from lanthanum powder and 1,2-diiodoethane in THF on exposure to light. Space group Pbcn, Z = 4, lattice dimensions at ?83°C: a = 1264.9, b = 2218.9, c = 1199.1 pm, R = 0.031. The lanthanum atom of the cation of 1 is coordinated with iodine atoms in the axial positions in a pentagonal-bipyramidal way. [SmCl3(THF)4] ( 2 ) originates as colourless crystals on heating SmCl3 with excess THF in the presence of Me3SiNPEt3. Space group P21/c, Z = 8, lattice dimensions at ?50°C: a = 3092.7, b = 826.2, c = 1758.3 pm, β = 93.85°, R = 0.054. Just like the known sample that crystallizes within the space group F2dd, 2 forms monomeric molecules in which the samarium atom is coordinated with two chlorine atoms in the axial positions in a distorted pentagonal-bipyramidal way. [ErCl2(THF)5]+[ErCl4(THF)2]? ( 3 ). Pale pink single crystals of 3 were prepared according to the described method by reaction of erbium powder with trimethylchlorosilane and methanol in THF. Space group C2/c, Z = 4, lattice dimensions at ?50°C: a = 1246.3, b = 1145.7, c = 2726.0 pm, β = 91.293°, R = 0.036. The erbium atom of the cation of 3 has a pentagonal-bipyramidal coordination with the chlorine atoms in the axial positions. Within the anion the THF molecules are in trans-arrangement of the octahedrally coordinated erbium atom. [ErC13(DME)2] ( 4 ) originates as pink single crystals from 3 with excess boiling 1,2-dimethoxyethane. Space group P21/c, Z = 4, lattice dimensions at ?50°C: a = 1137.2, b = 886.5, c = 1561.1 pm, β = 104.746°, R = 0.032. 4 forms monomeric molecules in which the erbium atom has a pentagonal-bipyramidal surrounding with two chlorine atoms in the axial positions. [Na(18-Krone-6)(THF)2]+ [YbBr4(THF)2]? ( 5 ) is formed as by-product by the reaction of YbBr3 with NaN(SiMe3)2 in THF in the presence-of 18-crown-6 forming colourless crystals. Space group P1 , Z = 1, lattice dimensions at ?70°C: a = 934.6, b = 988.9, c = 1208.0 pm, α = 73.82°, β = 72.98°, γ = 76.89°, R = 0.029. 5 contains isolated [YbBr4(THF)2]?ions, in which the THF molecules are arranged in trans-position.  相似文献   

10.
Two [MoOCl3(THF)2] molecules are used for detachment of two Cl atoms from [MgCl2(THF)2]. In such reaction a green crystalline salt [Mg(THF)6][MoOCl4THF]2 IV is formed. Compound IV reacts further with 3 equivalents of bis(tetrahydrofuran)magnesium dichloride, yielding a green ionic [Mg2(m?-Cl)3(THF)6][MoOCl4THF] compound V . Compound IV and V vary only in a structure of cation what indicated that the tri-m?-chlorohexakis(tetrahydrofuran)dimagnesium(II) cation in V is really formed in reaction between [Mg(THF)6]2+ cation and [MgCl2(THF)2]. The crystal structure of compounds IV and V has been solved by X-ray diffraction method. The [Mg(THF)6]2+ cation forms the tetragonally distorted octahedron with the magnesium atom in the symmetry centre. In homobimetallic di-octahedral [Mg2(m?-Cl)3(THF)6]+ cation the magnesium atoms are surrounded by three bridging chlorine atoms and three THF molecules. The structures of [MoOCl4THF]? in IV and V are similar. In those anions the molybdenum atom is hexacoordinated with four chlorine atoms in equatorial plane.  相似文献   

11.
12.
The compound [Ru3(CO)9[mu-P(NPri2)2]3][Ru6(CO)15(mu 6-C)[mu-P(NPri2)2]] (1), obtained via the addition of PCl(NPri2)2 to K2[Ru4(CO)13], crystallizes in the monoclinic space group P2l/c with a = 15.537(8) A, b = 36.151(16) A, c = 19.407(5) A, beta = 91.14(2) degrees, Z = 4, and R = 0.069 for 8006 observed reflections. The unit cell is unusual in that it contains both a typical octahedral Ru6 cluster anion (1a), featuring an encapsulated carbide, and a symmetrical phosphido bridge, in addition to a 50-electron trinuclear cluster cation [Ru3(CO)9[mu-P(NPri2)2]3]+ (1c). The latter, with approximate D3h symmetry, exhibits long Ru-Ru distances (> or = 3.15 A). Among the family of clusters with M3(mu-PR2)3 cores and different numbers of both electrons (TEC) and terminal ligands (LxLyLz), 1c is unique in that it is a 333 stereotype with 50 valence electrons. MO calculations permit us to predict the existence of redox congeners of 1c clusters and related 48e Re3 clusters. This work also presents a summary of the relationships between the electronic and the geometric structures for all known M3LxLyLz(mu-PR2)3 species. The basic stereochemical features are influenced by the total-electron count and, hence, by the degree of M-M bonding, as well as the remarkable flexibility of the phosphido bridging ligands. The mu-PR2 ligands need not necessarily lie in the M3 plane, and a wide range of M-P-M angles (as small as 72 degrees or as large as 133 degrees) have been observed.  相似文献   

13.
Vaporization of the barium molecular complex [Ba(18C6)(C5O2F6H)2] and the newly prepared strontium complex [Sr(15C5)(C5O2F6H)2] was studied using a semiempirical structure-thermochemical approach. The studies of intermolecular steric shielding of individual atoms and analysis of the possible intermolecular contacts in these complexes made it possible to identify the atoms and atom groups with significant contributions to the vaporization enthalpy. The hypothetical vaporization enthalpies were calculated by summing the contributions of groups. The melting and sublimation enthalpies were determined experimentally.  相似文献   

14.
15.
16.
Reaction of C(NMe2)4 with Ni(CO)4 – Syntheses and Structures of [C(NMe2)3][(CO)3NiC(O)NMe2], [C(NMe2)3]2[Ni5(CO)12], and [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] The reaction of C(NMe2)4 with Ni(CO)4 in THF produces the carbamoyl complex [C(NMe2)3][(CO)3NiC(O)NMe2] ( 1 ); side products are the purple cluster compound [C(NMe2)3]2[Ni5(CO)12] · THF ( 2 · THF) and the red cocristallization product [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] ( 3 ). All compounds were studied by X‐ray diffraction analyses. The cations of 3 are all disordered but not those of 1 and 2 . The unit cell of 1 contains two crystallographically independent anions (I and II) which differ in the dihedral angle between the plane of the carbamoyl ligand and the plane defined by the atoms CCarbamoyl–Ni–CO amounting 0° in the anion I and 18° in the anion II.  相似文献   

17.
18.
19.
20.
Trimethylamine‐tris(pentafluoroethyl)borane [(C2F5)3BNMe3] ( 1 ) reacts at 190 °C with water under displacement of the trimethylamine ligand to yield the hydroxy‐tris(pentafluoroethyl)borate [(C2F5)3BOH]? ( 2 ). In tributylamine 1 reacts with alkynes HC≡CR to form novel ethynyl‐tris(pentafluoroethyl)borate anions [(C2F5)3BC≡CR]? – R = C6H5 ( 3 ), C6H4CH3 ( 4 ), Si(CH(CH3)2)3 ( 5 ) – in moderate yields. Compound 3 adds water across the triple bond to form the novel anion [(C2F5)3BCH2(CO)C6H5]? ( 6 ). The structures of [(C2F5)3BNMe3], [NMe4][(C2F5)3BOH] and K[(C2F5)3BCH2(CO)C6H5] have been determined by x‐ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号