首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li TT  Cen MC 《Talanta》1969,16(4):544-550
The complexes of uranium(VI) and lead(II) with 1-glutamine were investigated polarographically. For uranium(VI), the complexes UO(2)G(+2), UO(2)G(2)(+2) and UO(2)(OH)Ga(2)(+) were identified at pH < 2.5, pH 2.5-4.1 and pH 4.1-5.2 respectively. With lead(II), complexes PbG(+2), Pb(OH)G(+) and Pb(OH)G(2)(+) were formed at pH 2.0-5.0, pH 5.0-7.0, and pH 7.0-8.5, respectively. The concentration dissociation constant of Pb(OH)G(2)(+) was found to be pK(c) = 10.16 +/- 0.04 at ionic strength 0.6.  相似文献   

2.
The coordination of the U(IV) and U(VI) ions as a function of the chloride concentration in aqueous solution has been studied by U L(III)-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The oxidation state of uranium was changed in situ using a gastight spectroelectrochemical cell, specifically designed for the safe use with radioactive solutions. For U(VI) we observed the complexes UO2(H2O)5(2+), UO2(H2O)4Cl+, UO2(H2O)3Cl2(0), and UO2(H2O)2Cl3- with [Cl-] increasing from 0 to 9 M, and for U(IV) we observed the complexes U(H2O)9(4+), U(H2O)8Cl3+, U(H2O)(6-7)Cl2(2+), and U(H2O)5Cl3+. The distances in the U(VI) coordination sphere are U-Oax = 1.76+/-0.02 A, Oeq = 2.41 +/- 0.02 A, and U-Cl = 2.71 +/- 0.02 A; the distances in the U(IV) coordination sphere are U-O = 2.41 +/- 0.02 A and U-Cl = 2.71 +/- 0.02 A.  相似文献   

3.
The solution chemistry of uranyl ion with iminodiacetate (IDA) and oxydiacetate (ODA) was investigated using NMR and EXAFS spectroscopies, potentiometry, and calorimetry. From the NMR and EXAFS data and depending on stoichiometry and pH, three types of metal:ligand complex were identified in solution in the pH range 3-7: 1:1 and 1:2 monomers; a 2:2 dimer. From NMR and EXAFS data for the IDA system and previous studies, we propose the three complex types are [UO(2)(IDA)(H(2)O)(2)], [UO(2)(IDA)(2)](2)(-), and [(UO(2))(2)(IDA)(2)(mu-OH)(2)](2)(-). From EXAFS spectroscopy, similar 1:1, 2:2, and 1:2 complexes are found for the ODA system, although (13)C NMR spectroscopy was not a useful probe in this system. For the 1:1 and 1:2 complexes in solution, EXAFS spectroscopy is ambiguous because the data can be fitted with either a long U-N/O(ether) value (ca. 2.9 A) suggesting 1,7-coordination of the ligand or a U-C interaction at a similar distance, consistent with terminal bidentate coordination. However, the NMR data of the IDA system suggest that 1,7-coordination is the more likely. The stability constants of the three complexes were determined by potentiometric titrations; the log beta values are 9.90 +/-, 16.42 +/-, and 10.80 +/- for the 1:1, 1:2, and 2:2 uranyl-IDA complexes, respectively, and 5.77 +/-, 7.84 +/-, and 4.29 +/- for the 1:1, 1:2, and 2:2 uranyl-ODA complexes, respectively. The thermodynamic constants for the complexes were calculated from calorimetric titrations; the enthalpy changes (kJ mol(-)(1)) and entropy changes (J K(-)(1) mol(-)(1)) of complexation for the 1:1, 1:2, and 2:2 complexes respectively are the following. IDA: 12 +/- 2, 230 +/- 8; 8 +/- 2, 151 +/- 9; -33 +/- 3, -283 +/- 11. ODA: 26 +/- 2, 198 +/- 12; 20 +/- 2, 106 +/- 8; -24 +/- 2; -219 +/- 8.  相似文献   

4.
Furia E  Porto R 《Annali di chimica》2004,94(11):795-804
The complexation equilibria of the hydrogen salicylate ion, HL(-), have been studied, at 25 degrees C, by potentiometric measurements with a glass electrode in 1 M NaClO4 for uranyl and Nd(III) ions and in 3 M NaClO4 for Pb(II) ion. The ligand concentration (CL) was varied between 10(-3) and 0.05 M. In the system with U(VI) the concentrations ranged between: 10(-3) < or = [U(VI)] < or = 0.01 M, 0.5 < or = CL /[U(VI)] < or = 10 and 10(-2) < or = [H+] < or = 10(-5) M; for neodymium system: 2 x 10(-3) < or = [Nd(III)] < or = 0.01, 1 < or = CL /[Nd(III)] < or = 10 and 10(-2) < or = [H+] < or = 10(-7) M; for lead system: 10(-3) < or = [Pb(II) < or = 3 x 10(-3), 1 < or = CL /Pb(II)] < or = 2 and 10(-5) < or = [H+] < or = 10(-7.3) M. The experimental data have been explained with the formation of UO2HL+, UO2L, UO2(OH)L(-), (UO2)2(OH)L2(-) UO2(HL)L(-), NdHL(2+), NdL(+), Nd(OH)L, PbHL(+), PbL and PbL2(2-). Equilibrium constants are given for the investigated ionic media and at infinite dilution.  相似文献   

5.
6.
Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes with the ligand 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester (HL(2)) have been prepared and characterized by elemental analyses, molar conductance, magnetic moment, thermal analysis and spectral data. 1:1 M:HL(2) complexes, with the general formula [M(HL(2))X(2)].nH(2)O (where M = Co(II) (X = Cl, n = 0), Ni(II) (X = Cl, n = 3), Cu(II) (grey colour, X = AcO, n = 1), Cu(II) (yellow colour, X = Cl, n = 0) and Zn(II) (X = Br, n = 0). In addition, the Fe(III) and UO(2)(II) complexes of the type 1:2 M:HL(2) and with the formulae [Fe(L(2))(2)]Cl and [UO(2)(HL(2))(2)](NO(3))(2) are prepared. From the IR data, it is seen that HL(2) ligand behaves as a terdentate ligand coordinated to the metal ions via the pyridyl N, carboxylate O and protonated NH group; except the Fe(III) complex, it coordinates via the deprotonated NH group. This is supported by the molar conductance data, which show that all the complexes are non-electrolytes, while the Fe(III) and UO(2)(II) complexes are 1:1 electrolytes. IR and H1-NMR spectral studies suggest a similar behaviour of the Zn(II) complex in solid and solution states. From the solid reflectance spectral data and magnetic moment measurements, the complexes have a trigonal bipyramidal (Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (Fe(III), UO(2)(II) complexes) geometrical structures. The thermal behaviour of the complexes is studied and the different dynamic parameters are calculated applying Coats-Redfern equation.  相似文献   

7.
The bis(imido) uranium(VI)-C(5)H(5) and -C(5)Me(5) complexes (C(5)H(5))(2)U(N(t)Bu)(2), (C(5)Me(5))(2)U(N(t)Bu)(2), (C(5)H(5))U(N(t)Bu)(2)(I)(dmpe), and (C(5)H(5))(2)U(N(t)Bu)(2)(dmpe) can be synthesized from reactions between U(N(t)Bu)(2)(I)(2)(L)(x) (L=THF, x=2; L=dmpe, x=1) and Na(C(5)R(5)) (R=H, Me); these complexes represent the first structurally characterized C(5)H(5)-compounds of uranium(VI) and they further highlight the differences between UO(2)(2+) and the bis(imido) fragment.  相似文献   

8.
To examine properties of pentavalent uranium, U(V), we have carried out electrochemical and spectroelectrochemical studies on UO(2)(saloph)L [saloph = N,N'-disalicylidene-o-phenylenediaminate, L = dimethyl sulfoxide (DMSO) or N,N-dimethylformamide (DMF)]. The electrochemical reactions of UO(2)(saloph)L complexes in L were found to occur quasireversibly. The reduction processes of UO(2)(saloph)L complexes were followed spectroelectrochemically by using an optical transparent thin layer electrode cell. It was found that the absorption spectra measured at the applied potentials from 0 to -1.650 V versus ferrocene/ferrocenium ion redox couple (Fc/Fc(+)) for UO(2)(saloph)DMSO in DMSO have clear isosbestic points and that the evaluated electron stoichiometry equals 1.08. These results indicate that the reduction product of UO(2)(saloph)DMSO is [U(V)O(2)(saloph)DMSO](-), which is considerably stable in DMSO. Furthermore, it was clarified that the absorption spectrum of the [U(V)O(2)(saloph)DMSO](-) complex has a very small molar absorptivity in the visible region and characteristic absorption bands due to the 5f(1) orbital at around 750 and 900 nm. For UO(2)(saloph)DMF in DMF, the clear isosbestic points were not observed in the similar spectral changes. It is proposed that the UO(2)(saloph)DMF complex is reduced to [U(V)O(2)(saloph)DMF](-) accompanied by the dissociation of DMF as a successive reaction. The formal redox potentials of UO(2)(saloph)L in L (E(0), vs Fc/Fc(+)) for U(VI)/U(V) couple were determined to be -1.550 V for L = DMSO and -1.626 V for L = DMF.  相似文献   

9.
The composition and equilibrium constants of the complexes formed in the binary U(VI)-hydroxide and the ternary U(VI)-hydroxide-peroxide systems have been studied using potentiometric and spectrophotometric data at 25 °C in a 0.100 M tetramethylammonium nitrate medium. The data for the binary U(VI) hydroxide complexes were in good agreement with previous studies. In the ternary system two complexes were identified, [UO(2)(OH)(O(2))](-) and [(UO(2))(2)(OH)(O(2))(2)](-). Under our experimental conditions the former is predominant over a broad p[H(+)] region from 9.5 to 11.5, while the second is found in significant amounts at p[H(+)] < 10.5. The formation of the ternary peroxide complexes results in a strong increase in the molar absorptivity of the test solutions. The absorption spectrum for [(UO(2))(2)(OH)(O(2))(2)](-) was resolved into two components with peaks at 353 and 308 nm with molar absorptivity of 16200 and 20300 M(-1) cm(-1), respectively, suggesting that the electronic transitions are dipole allowed. The molar absorptivity of [(UO(2))(OH)(O(2))](-) at the same wave lengths are significantly lower, but still about one to two orders of magnitude larger than the values for UO(2)(2+)(aq) and the binary uranyl(VI) hydroxide complexes. It is of interest to note that [(UO(2))(OH)(O(2))](-) might be the building block in cluster compounds such as [UO(2)(OH)(O(2))](60)(60-) studied by Burns et al. (P. C. Burns, K. A. Kubatko, G. Sigmon, B. J. Fryer, J. E. Gagnon, M. R. Antonio and L. Soderholm, Angew. Chem. 2005, 117, 2173-2177). Speciation calculations using the known equilibrium constants for the U(vi) hydroxide and peroxide complexes show that the latter are important in alkaline solutions even at very low total concentrations of peroxide, suggesting that they may be involved when the uranium minerals Studtite and meta-Studtite are formed by α-radiolysis of water. Radiolysis will be much larger in repositories for spent nuclear fuel where hydrogen peroxide might contribute both to the corrosion of the fuel and to transport of uranium in a ground water system.  相似文献   

10.
The formation of uranyl-peroxide complexes was studied at alkaline media by using UV-Visible spectrophotometry and the STAR code. Two different complexes were found at a H(2)O(2)/U(VI) ratio lower than 2. A graphical method was used in order to obtain the formation constants of such complexes and the STAR program was used to refine the formation constants values because of its capacity to treat multiwavelength absorbance data and refining equilibrium constants. The values obtained for the two complexes identified were: UO(2)(2+) + H(2)O(2) + 4OH(-) UO(2)(O(2))(OH)(2)(2-) + 2H(2)O: log β°(1,1,4) = 28.1 ± 0.1 (1). UO(2)(2+) + 2H(2)O(2) + 6OH(-) UO(2)(O(2))(2)(OH)(2)(4-) + 4H(2)O: log β°(1,2,6) = 36.8 ± 0.2 (2). At hydrogen peroxide concentrations higher than 10(-5) mol dm(-3), and in the absence of carbonate, the UO(2)(O(2))(2)(OH)(2)(4-) complex is predominant in solution, indicating the significant peroxide affinity of peroxide ions for uranium and the strong complexes of uranium(VI) with peroxide.  相似文献   

11.
Hoshino H  Yotsuyanagi T 《Talanta》1984,31(7):525-530
The ion-pair extraction equilibria of the iron(II) and iron(III) chelates of 4-(2-pyridylazo)resorcinol (PAR, H(2)L) are described. The anionic chelates were extracted into chloroform with benzyldimethyltetradecylammonium chloride (QC1) as counter-ion. The extraction constants were estimated to be K(ex1)(Fe(II)) = [Q{Fe(II)(HL)L}](0)/[Q(+)][{Fe(II)(HL)L}(-)] = 10(8.59 +/- 0.11), K(ex2)(Fe(II)) = [Q(2){Fe(II)L(2)}](o)/ [Q(+)](2)[{Fe(II)L(2)}(2-)] = 10(12.17 +/- 0.10) and K(ex1)(Fe(III)) = [Q{Fe((III))L(2)}](o)/(Q(+)][{Fe(III)L(2)}(-)] = 10(6.78 +/- 0.15) at I = 0.10 and 20 degrees , where [ ](o) is concentration in the chloroform phase. Aggregation of Q{Fe(III)L(2)} in chloroform was observed and the dimerization constant (K(d) = [Q(2){Fe(III)L(2)}(2)](o)/[Q{Fe(III)L(2)}](o)(2)) was evaluated as log K(d) = 4.3 +/- 0.3 at 20 degrees . The neutral chelates of {Fe(II)(HL)(2)} and {Fe(III)(HL)L}, and the ion-pair of the cationic chelate, {Fe(III)(HL)(2)}ClO(4), were also extracted into chloroform or nitrobenzene. The relationship between the forms and extraction properties of the iron(II) and iron(III) PAR chelates are discussed in connection with those of the nickel(II) and cobalt(III) complexes. Correlation between the extraction equilibrium data and the elution behaviour of some PAR chelates in ion-pair reversed-phase partition chromatography is also discussed.  相似文献   

12.
The structural chemistry of uranium(VI) in concentrated aqueous hydrobromic acid solutions was investigated using both single crystal X-ray diffraction and synchrotron-based high-energy X-ray scattering (HEXS) to reveal the structure of the uranium(VI) complexes in solution prior to crystallization. The crystal structures of a series of uranyl tetrabromide salts are reported, including Cs(2)UO(2)Br(4), Rb(2)UO(2)Br(4)·2H(2)O, K(2)UO(2)Br(4)·2H(2)O, and (NH(4))(2)UO(2)Br(4)·2H(2)O, as well as a molecular dimer of uranium(VI), (UO(2))(2)(OH)(2)Br(2)(H(2)O)(4). Limited correspondence exists between the structures observed in the solid state and those in solution. Quantitative analysis of the HEXS data show an average U-Br coordination number of 1.9(2) in solution, in contrast to the U-Br coordination number of 4 in the solid salts.  相似文献   

13.
Using density functional theory (DFT) calculations, we revisited a classical problem of uranyl(VI) oxalate photochemical decomposition. Photoreactivities of uranyl(VI) oxalate complexes are found to correlate largely with ligand-structural arrangements. Importantly, the intramolecular photochemical reaction is inhibited when oxalate is bound to uranium exclusively in chelate binding mode. Previously proposed mechanisms involving a UO(2)(C(2)O(4))(2)(2-) (1:2) complex as the main photoreactive species are thus unlikely to apply, because the two oxalic acids are bound to uranium in a chelating binding mode. Our DFT results suggest that the relevant photoreactive species are UO(2)(C(2)O(4))(3)(4-) (1:3) and (UO(2))(2)(C(2)O(4))(5)(6-) (2:5) complexes binding uranium in an unidentate fashion. These species go through decarboxylation upon excitation to the triplet state, which ensues the release of CO(2) and reduction of U(vi) to U(v). The calculations also suggest an alternative intermolecular pathway at low pH via an electron transfer between the excited state *UO(2)(2+) and hydrogen oxalate (HC(2)O(4)(-)) which eventually leads to the production of CO and OH(-) with no net reduction of U(VI). The calculated results are consistent with previous experimental findings that CO is only detected at low pH while U(IV) is detected only at high pH.  相似文献   

14.
Kumar N  Manku GS  Bhat AN  Jain BD 《Talanta》1970,17(9):873-876
Pyridine-2-aldoiumc (I) has been found to be a sensitive reagent for the gravimetric determination of palladium(II). From chloride medium, precipitation is complete at pH 3.0-11.0, and in solution containing 1NHNO(3) to pH6.0. The compositions of the precipitates (dried at 130 degrees ) correspond to PdL(2), and PdL(2). HNO(3) (HL representing the reagent) respectively. Pd(II) can be estimated gravimetncally in presence of acetate, oxalate, tartrate, phosphate, fluoride borate, perchlorate, Cu(II), Cd, Co(II), Fe(II), Ni, Zn, Pb, Bi, Sb(III), Pt(IV), Ir(IV), Ru(III), Rh(III); Os(IV) in quantities more than twice that of Pd(II), and Ag(I), Au(III) and Fe(II) even m traces cause serious interference. The yellow uranium(VI) complex with (I) is precipitated quantitatively over the pH range 3.5-10.5 and, after washing and drying corresponds to the composition (c(6)h(5)n(2)o)(2)uo(2), The uranium(VI) complex with 6-methylpyridine-2-aldoxime (II) is precipitated quantitatively over the pH range 3.0-10.5, and after washing and drying at 120-130 degrees corresponds to UO(2),(C(7),H(7),N(2)O)(2). Both (I) and (II) are suitable for the estimation of 1-50 mg of uranium(VI) in the presence of up to 10-fold quantities ofTh(IV), La(III) and Ce(III) even when present together. Ce(IV) in quantities more than three times that of U must be reduced to Ce(III). Tartrate, citrate, phosphate, Ti(IV) and Zr interfere, but acetate, oxalate, and borate do not.  相似文献   

15.
We describe the synthesis, solid state and solution properties of two families of uranyl(VI) complexes that are ligated by neutral monodentate and anionic bidentate P=O, P=NH and As=O ligands bearing pendent phenyl chromophores. The uranyl(VI) ions in these complexes possess long-lived photoluminescent LMCT (3)Π(u) excited states, which can be exploited as a sensitive probe of electronic structure, bonding and aggregation behaviour in non-aqueous media. For a family of well defined complexes of given symmetry in trans-[UO(2)Cl(2)(L(2))] (L = Ph(3)PO (1), Ph(3)AsO (2) and Ph(3)PNH (3)), the emission spectral profiles in CH(2)Cl(2) are indicative of the strength of the donor atoms bound in the equatorial plane and the uranyl bond strength; the uranyl LMCT emission maxima are shifted to lower energy as the donor strength of L increases. The luminescence lifetimes in fluid solution mirror these observations (0.87-3.46 μs) and are particularly sensitive to vibrational and bimolecular deactivation. In a family of structurally well defined complexes of the related anion, tetraphenylimidodiphosphinate (TPIP), monometallic complexes, [UO(2)(TPIP)(thf)] (4), [UO(2)(TPIP)(Cy(3)PO)] 5), a bimetallic complex [UO(2)(TPIP)(2)](2) (6) and a previously known trimetallic complex, [UO(2)(TPIP)(2)](3) (7) can be isolated by variation of the synthetic procedure. Complex 7 differs from 6 as the central uranyl ion in 7 is orthogonally connected to the two peripheral ones via uranyl → uranium dative bonds. Each of these oligomers exhibits a characteristic optical fingerprint, where the emission maxima, the spectral shape and temporal decay profiles are unique for each structural form. Notably, excited state intermetallic quenching in the trimetallic complex 7 considerably reduces the luminescence lifetime with respect to the monometallic counterpart 5 (from 2.00 μs to 1.04 μs). This study demonstrates that time resolved and multi-parametric luminescence can be of value in ascertaining solution and structural forms of discrete uranyl(VI) complexes in non-aqueous solution.  相似文献   

16.
The pH dependence of uranyl(VI) complexation by citric acid was investigated using Raman and attenuated total reflection FTIR spectroscopies and electrospray ionization mass spectrometry. pH-dependent changes in the nu(s)(UO(2)) envelope indicate that three major UO(2)(2+)-citrate complexes with progressively increasing U=O bond lengths are present over a range of pH from 2.0 to 9.5. The first species, which is the predominant form of uranyl(VI) from pH 3.0 to 5.0, contains two UO(2)(2+) groups in spectroscopically equivalent coordination environments and corresponds to the [(UO(2))(2)Cit(2)](2)(-) complex known to exist in this pH range. At pH values >6.5, [(UO(2))(2)Cit(2)](2)(-) undergoes an interconversion to form [(UO(2))(3)Cit(3)](3)(-) and (UO(2))(3)Cit(2). ESI-MS studies on solutions of varying uranyl(VI)/citrate ratios, pH, and solution counteranion were successfully used to confirm complex stoichiometries. Uranyl and citrate concentrations investigated ranged from 0.50 to 50 mM.  相似文献   

17.
Saad EM  Mansour RA  El-Asmy A  El-Shahawi MS 《Talanta》2008,76(5):1041-1046
The retention profile of uranium (VI) as uranyl ions (UO(2)(2+)) from the aqueous media onto the solid sorbent date pits has been investigated. The sorption of UO(2)(2+) ions onto the date pits was achieved quantitatively (98+/-3.4%, n=5) after 15 min of shaking at pH 6-7. The sorption of UO(2)(2+) onto the used sorbent was found fast, followed by a first order rate equation with an overall rate constant, k of 4.8+/-0.05 s(-1). The sorption data were explained in a manner consistent with a "solvent extraction" mechanism. The sorption data were also subjected to Freundlich isotherm model over a wide range of equilibrium concentration (1-20 microgmL(-1)) of UO(2)(2+). The results revealed that, a "dual-mode" of sorption mechanism involving absorption related to "solvent extraction" and an added component for "surface adsorption" is most likely operated simultaneously for uranyl ions uptaking the solid sorbent. The thermodynamic parameters (-DeltaH, DeltaS and DeltaG) of the uranyl ions uptake onto the date pits indicated that, the process is endothermic and proceeds spontaneously. The interference of some diverse ions on the sorption UO(2)(2+) from the aqueous media onto the date pits packed column was critically investigated and the data revealed quantitative collection of UO(2)(2+) at 5 mLmin(-1) flow rate. The retained UO(2)(2+) was recovered quantitatively with HCl (3.0 molL(-1)) from the column at 5 mLmin(-1) flow rate. The mode of binding of the date pits with UO(2)(2+) was determined from the IR spectral date bits before and after extraction of uranium (VI). The height equivalent (HETP) and the number (N) of theoretical plates of the date pits packed column were determined from the chromatograms. Complete retention and recovery of UO(2)(2+) spiked to wastewater samples by the date pits packed column was successfully achieved. The capacity of the used sorbent towards retention of uranium (VI) from aqueous solutions was much better than the most common sorbents.  相似文献   

18.
The structure, thermodynamics and kinetics of the binary and ternary uranium(VI)-ethylenediamine-N,N'-diacetate (in the following denoted EDDA) fluoride systems have been studied using potentiometry, 1H, 19F NMR spectroscopy and X-ray diffraction. The UO2(2+)-EDDA system could be studied up to -log[H3O+] = 3.4 where the formation of two binary complexes UO2(EDDA)(aq) and UO2(H3EDDA)3+ were identified, with equilibrium constants logbeta(UO2EDDA) = 11.63 +/- 0.02 and logbeta(UO2H3EDDA3+) = 1.77 +/- 0.04, respectively. In the ternary system the complexes UO2(EDDA)F-, UO2(EDDA)(OH)- and (UO2)2(mu-OH)2(HEDDA)2F2(aq) were identified; the latter through 19F NMR. 1H NMR spectra indicate that the EDDA ligand is chelate bonded in UO2(EDDA)(aq), UO2(EDDA)F- and UO2(EDDA)(OH)- while only one carboxylate group is coordinated in UO2(H3EDDA)3+. The rate and mechanism of the fluoride exchange between UO2(EDDA)F- and free fluoride was studied by 19F NMR spectroscopy. Three reactions contribute to the exchange; (i) site exchange between UO2(EDDA)F- and free fluoride without any net chemical exchange, (ii) replacement of the coordinated fluoride with OH- and (iii) the self dissociation of the coordinated fluoride forming UO2(EDDA)(aq); these reactions seem to follow associative mechanisms. (1)H NMR spectra show that the exchange between the free and chelate bonded EDDA is slow and consists of several steps, protonation/deprotonation and chelate ring opening/ring closure, the mechanism cannot be elucidated from the available data. The structure (UO2)2(EDDA)2(mu-H2EDDA) was determined by single crystal X-ray diffraction and contains two UO2(EDDA) units with tetracoordinated EDDA linked by H2EDDA in the "zwitterion" form, coordinated through a single carboxylate oxygen from each end to the two uranium atoms. The geometry of the complexes indicates that there is no geometric constraint for an associative ligand substitution mechanism.  相似文献   

19.
Structural isomers of [UO(2)(oxalate)(3)](4-), [UO(2)(oxalate)F(3)](3-), [UO(2)(oxalate)(2)F](3-), and [UO(2)(oxalate)(2)(H(2)O)](2-) have been studied by using EXAFS and quantum chemical ab initio methods. Theoretical structures and their relative energies were determined in the gas phase and in water using the CPCM model. The most stable isomers according to the quantum chemical calculations have geometries consistent with the EXAFS data, and the difference between measured and calculated bond distances is generally less than 0.05 A. The complex [UO(2)(oxalate)(3)](4-) contains two oxalate ligands forming five-membered chelate rings, while the third is bonded end-on to a single carboxylate oxygen. The most stable isomer of the other two complexes also contains the same type of chelate-bonded oxalate ligands. The activation energy for ring opening in [UO(2)(oxalate)F(3)](3-), deltaU++ = 63 kJ/mol, is in fair agreement with the experimental activation enthalpy, deltaH++ = 45 +/- 5 kJ/mol, for different [UO(2)(picolinate)F(3)](2-) complexes, indicating similar ring-opening mechanisms. No direct experimental information is available on intramolecular exchange in [UO(3)(oxalate)(3)](4-). The theoretical results indicate that it takes place via the tris-chelated intermediate with an activation energy of deltaU++ = 38 kJ/mol; the other pathways involve multiple steps and have much higher activation energies. The geometries and energies of dioxouranium(VI) complexes in the gas phase and solvent models differ slightly, with differences in bond distance and energy of typically less than 0.06 A and 10 kJ/mol, respectively. However, there might be a significant difference in the distance between uranium and the leaving/entering group in the transition state, resulting in a systematic error when the gas-phase geometry is used to estimate the activation energy in solution. This systematic error is about 10 kJ/mol and tends to cancel when comparing different pathways.  相似文献   

20.
Oxidation of our previously reported uranium(V) oxo complexes, supported by the chelating ((R)ArO)(3)tacn(3-) ligand system (R = tert-butyl (t-Bu), 1-t-Bu; R = 1-adamantyl (Ad), 1-Ad), yields terminal uranium(VI) oxo complexes [(((R)ArO)(3)tacn)U(VI)(O)]SbF(6) (R = t-Bu, 2-t-Bu; R = Ad, 2-Ad). These complexes differ in their molecular geometry in that 2-t-Bu possesses pseudo-C(s) symmetry in solution and solid state as the terminal oxo ligand lies in the equatorial plane (as defined by the three aryloxide arms of the ligand) in order to accommodate the thermodynamic preference of high-valent uranium oxo complexes to have a σ- and π-donating ligand trans to the oxo (vis-à-vis the ubiquity of the linear UO(2)(2+) moiety). The distortion of the ligand--which stands in contrast to all other complexes of uranium supported by the ((R)ArO)(3)tacn(3-) ligand, including 2-Ad--is most clearly seen in the structures of 2-t-Bu, [(((t-Bu)ArO)(3)tacn)U(VI)(O)(eq)]SbF(6), and 3-t-Bu, [(((t-Bu)ArO)(3)tacn)U(VI)(O)(eq)(OC(O)CF(3))(ax)]. The solid-state structure of 3-t-Bu reveals that the trans U-O(ArO) bond length is shortened by 0.1 ? in comparison to the cis U-O(ArO) bonds and the trans U-O-C(ipso) angle is linearized (157.67° versus 147.85° and 130.03°). Remarkably, the minor modification of the ligand to have Ad groups at the ortho positions of the aryloxide arms is sufficient to stabilize a C(3v)-symmetric terminal uranium(VI) oxo complex (2-Ad) without a ligand trans to the oxo. These experimental results were reproduced in DFT calculations and allow the qualitative bracketing of the relative thermodynamic stabilization afforded by the inverse trans-influence as ~6 kcal mol(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号