首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nayak M  Koner R  Lin HH  Flörke U  Wei HH  Mohanta S 《Inorganic chemistry》2006,45(26):10764-10773
Syntheses, structures, and magnetic properties of one mononuclear inclusion compound [CuIIL1 within (H2O)] (1) and three tetrametal systems of the composition [{CuIIL1}2{CuIIL1MII(H2O)3}]ClO4)2 (M = Cu (2), M = Co (3), M = Mn (4)) derived from the hexadentate Schiff base compartmental ligand N,N'-ethylenebis(3-ethoxysalicylaldimine) (H2L1) have been described. Compounds 1 and 2 crystallize in orthorhombic Pbcn and monoclinic P21/c systems, respectively, and the space group of the isomorphous compounds 3 and 4 is monoclinic C2/c. The water molecule in 1 is encapsulated in the vacant O4 compartment because of the hydrogen bonding interactions with the ether and phenolate oxygens, resulting in the formation of an inclusion product. The structures of 2-4 consist of the [CuIIL1MII(H2O)3]2+ cation and two mononuclear [CuIIL1] moieties. In the dinuclear [CuIIL1MII(H2O)3]2+ cation, the metal centers are doubly bridged by the two phenolate oxygens. The second metal center, MII (Cu in 2, Co in 3, and Mn in 4), in the [CuIIL1MII(H2O)3]2+ cation is pentacoordinated by the two phenoxo oxygens and three water molecules. Two of these three coordinated water molecules interact, similar to that in 1, with two mononuclear [CuIIL1] moieties, resulting in the formation of the tetrametal [{CuIIL1}2{CuIIL1MII(H2O)3}]2+ system that consists of the cocrystallized dinuclear (one) and mononuclear (two) moieties. Evidently, the cocrystallization observed in 2-4 is related to the tendency of a water molecule to be encapsulated in the vacant O4 compartment of the mononuclear [CuIIL1] species. In the case of 2, there are two independent [CuIIL1CuII(H2O)3]2+ units. The tau ((beta-alpha)/60, where beta and alpha are the largest and second largest bond angles, respectively) values in the pentacoordinated environment of the two copper(II) centers in 2 are 0.04 and 0.37, indicating almost ideal and appreciably distorted square pyramidal geometry, respectively. In contrast, the tau values (0.54 for 3 and 0.49 for 4) indicate that the coordination geometry around the cobalt(II) and manganese(II) centers in 3 and 4 is intermediate between square pyramidal and trigonal bipyramidal. The variable-temperature (2-300 K) magnetic susceptibilities of compounds 2-4 have been measured. The magnetic data have been analyzed in the model of one exchange-coupled dinuclear CuIIMII moiety and two noninteracting CuII centers. In all three cases, the metal ions in the dinuclear core are coupled by a weak antiferromagnetic interaction (J = -17.4 cm-1, -8 cm-1, and -14 cm-1 for 2, 3, and 4, respectively). The observation of a weak interaction has been explained in terms of the structural parameters and symmetry of the magnetic orbitals.  相似文献   

2.
Immobilization of the chiral salen-metal complex [Mn(III)(salen)(H(2)O)(2)ClO(4)] on the Keggin-type polyoxometalate (POM) skeletons leads to the isolation of POM derivatives functionalized with chiral salen-metal complexes, which represent the first examples of introducing chiral salen-metal complexes into the POM systems.  相似文献   

3.
Electrospray ionization in combination with tandem mass spectrometric techniques has been employed to study the formation of oxomanganese-salen complexes upon oxidation of [Mn(III)(salen)]+ cations as well as the properties and reactions of the oxidized species in the gas phase. Two species could be characterized as the principal oxidation products: the oxomanganese(v) complex, [Mn=O(salen)]+, which is the actual oxygen-transfer agent in epoxidation reactions, and the dinuclear, mu-oxo bridged [L(salen)Mn-O-Mn(salen)L]2+ with two terminal ligands L; the latter acts as a reservoir species. The effects of various substituents in the 5- and 5'-positions, respectively, of the salen ligand on the reactivity of the epoxidation catalyst were determined quantitatively from CID (collision-induced dissociation) experiments and B3LYP density functional calculations. Accordingly, the effect of axial donor ligands on the reactivity of the epoxidation catalyst was studied. Electron-withdrawing substitutents on the salen ligand and additional axial ligands decrease the stability and thus enhance the reactivity of the Mn=O moiety, while electron-donating salen substituents have a strong stabilizing effect.  相似文献   

4.
A series of [2.2]paracylophane-bridged bis-triarylamine mixed-valence (MV) radical cations were analyzed by a generalized Mulliken-Hush (GMH) three-level model which takes two transitions into account: the intervalence charge transfer (IV-CT) band which is assigned to an optically induced hole transfer (HT) from one triarylamine unit to the second one and a second band associated with a triarylamine radical cation to bridge (in particular, the [2.2]paracyclophane bridge) hole transfer. From the GMH analysis, we conclude that the [2.2]paracyclophane moiety is not the limiting factor which governs the intramolecular charge transfer. AM1-CISD calculations reveal that both through-bond as well as through-space interactions of the [2.2]paracyclophane bridge play an important role for hole transfer processes. These electronic interactions are of course smaller than direct pi-conjugation, but from the order of magnitude of the couplings of the [2.2]paracyclophane MV species, we assume that this bridge is able to mediate significant through-space and through-bond interactions and that the cyclophane bridge acts more like an unsaturated spacer rather than a saturated one. From the exponential dependence of the electronic coupling V between the two triarylamine localized states on the distance r between the two redox centers, we infer that the hole transfer occurs via a superexchange mechanism. Our analysis reveals that even significantly longer pi-conjugated bridges should still mediate significant electronic interactions because the decay constant beta of a series of pi-conjugated MV species is small.  相似文献   

5.
Yeung WF  Lau PH  Lau TC  Wei HY  Sun HL  Gao S  Chen ZD  Wong WT 《Inorganic chemistry》2005,44(19):6579-6590
The synthesis, structures, and magnetic properties of four cyano-bridged M(II)Ru(III)2 compounds prepared from the paramagnetic Ru(III) building blocks, trans-[Ru(salen)(CN)2]- 1 [H2salen = N,N'-ethylenebis(salicylideneimine)] and trans-[Ru(acac)2(CN)2]- (Hacac = acetylacetone), are described. Compound 2, {Mn(CH3OH)4[Ru(salen)(CN)2]2}.6CH3OH.2H2O, is a trinuclear complex that exhibits antiferromagnetic coupling between Mn(II) and Ru(III) centers. Compound 3, {Mn(H2O)2[Ru(salen)(CN)2]2.H2O}n, has a 2-D sheetlike structure that exhibits antiferromagnetic coupling between Mn and Ru, leading to ferrimagnetic-like behavior. Compound 4, {Ni(cyclam)[Ru(acac)2(CN)2]2}.2CH3OH.2H2O (cyclam = 1,4,8,11-tetraazacyclotetradecane), is a trinuclear complex that exhibits ferromagnetic coupling. Compound 5, {Co[Ru(acac)2(CN)2]2}n, has a 3-D diamond-like interpenetrating network that exhibits ferromagnetic ordering below 4.6 K. The density functional theory (DFT) method was used to calculate the molecular magnetic orbitals and the magnetic exchange interaction between Ru(III) and M(II) (Mn(II), Ni(II)) ions.  相似文献   

6.
《印度化学会志》2021,98(9):100118
A series of new hybrids, POM (M-Salen@POM) were synthesized by successfully inserting metallosalen compounds (where M ​= ​Co, Cu, Fe and Ru) into the lacunary position of Keggin type polyoxometalate, K8SiW11O39 (POM). The hybrids were characterized by FT-IR, powder XRD, diffuse reflectance UV–Vis, energy dispersive X-Ray and inductively coupled plasma atomic emission spectroscopy (ICP) techniques. The hybrids with different metal centers were comparatively studied for their catalytic activity in the oxidation of cycloalkanes, cycloalcohols and alkyl aromatic using a green oxidant, hydrogen peroxide. The products obtained during catalysis were estimated by gas chromatography(GC) and mass spectroscopy(MS). Catalytically synthesized products are of high industrial importance.  相似文献   

7.
The collision-induced dissociation (CID) of a series of gas-phase complexes [M(III)(salen)(P)](+) [where M = Cr, Mn, Fe, and Co; P = hexapeptides YGGFLR, WGGFLR, and GGGFLR; and salen = N,N'-ethylenebis(salicylideneaminato)] has been examined with respect to the ability of the complexes to form the corresponding cationic peptide radical ions, P(+)(*), by homolytic cleavage of the metal peptide bond. This is the first example of the use of gas-phase ternary metal peptide complexes to produce the corresponding cationic peptide radical for a metal other than copper(II). The fragmentation reactions competing with radical formation are highly dependent on the metal ion used. In addition, examination of modified complexes in which the periphery of the salen was substituted allowed evaluation of electronic effects on the CID process, presumably without significant change in the geometry surrounding the metal. This substitution demonstrates that the ligand can be used to tune the dissociation chemistry to favor radical formation and suppress unwanted further fragmentation of the peptide radical that is typically observed immediately following its dissociation from the complex.  相似文献   

8.
The reaction of a quaternary ammonium salt of the tin chloride-substituted polyoxometalate, [PSn(Cl)W11O39]4-, with a variety of n-nucleophiles including primary, secondary, and tertiary amines and a tertiary phosphine, yielded tin-centered Lewis acid-base adducts, [PSn(Cl)W11O39]4--n-nucleophile; with more nucleophilic secondary amines such as diisopropylamine, apparently some [PSnN[CH(CH3)2]2W11O39]4- was formed as a minor product. The compounds were identified by 1H, 119Sn, 15N, 31P, and 183W NMR, ESI-MS, and elemental analyses. The key connectivity of the Sn-Cl center with the amine was clarified by the observation of 3J Sn-H couplings (Sn from the polyoxometalate cluster and H from the amine moiety) in a 2D 119Sn-1H heteronuclear multiple-bond correlation NMR experiment. This new, rather simple synthetic method was also utilized for preparing amino acid-polyoxometalate hybrid compounds.  相似文献   

9.
Supramolecular containers featuring both high catalytic activity and high enantioselectivity represent a design challenge of practical importance. Herein, it is demonstrated that a chiral octahedral coordination cage can be constructed by using twelve enantiopure Mn(salen)‐derived dicarboxylic acids as linear linkers and six Zn4p‐tert‐butylsulfonylcalix[4]arene clusters as tetravalent four‐connected vertices. The porous cage features a large hydrophobic cavity (≈3944 Å3) decorated with catalytically active metallosalen species and is shown to be an efficient and recyclable asymmetric catalyst for the oxidative kinetic resolution of racemic secondary alcohols and the epoxidation of olefins with up to >99 % enantiomeric excess. The cage architecture not only prevents intermolecular deactivation and stabilizes the Mn(salen) catalysts but also encapsulates substrates and concentrates reactants in the cavity, resulting in enhanced reactivity and enantioselectivity relative to the free metallosalen catalyst.  相似文献   

10.
11.
1-Triphenylphosphoniobenzo[c]phospholide 1 reacts with [M(CO)(5)Br] (M = Mn, Re) and [Mn(CO)(3)(naphthalene)][BF(4)] to give complexes cis-[M(CO)(4)(1)Br] (5 a,b) and [Mn(CO)(3)(1)][BF(4)] (6 a[BF(4)]), respectively, featuring eta(1)(P)- and eta(5)(pi)-coordination of the phosphole ring. The corresponding reactions with [M(2)(CO)(10)] proceed with conservation of the metal-metal bond and yield, depending on the reaction temperature, dinuclear complexes [M(2)(CO)(8)(1)] (M=Mn, 7 a) or [M(2)(CO)(6)(1)(2)] (M=Mn, Re, 8 a,b) with mu(2)-bridging eta(1)(P):eta(2)(Pdbond;C) coordination of the phosphole moiety. All complexes formed were characterized by spectroscopic data; 5 b, 6 a[BF(4)], and 8 a,b were characterized by X-ray diffraction studies as well. The structural and (31)P NMR data of the dinuclear manganese complex 8 a suggest that the interaction between the metal atoms and the eta(2)-bound Pdbond;C double bond moieties is dominated by the L-->M charge-transfer contribution; this hints at a very low back-donation ability of the central M(2)(CO)(6) fragment. Investigation of the reactions of the Mn complexes 6 a and 8 a with Mg or ferrocenium hexafluorophosphate ([Fc][PF(6)]), respectively, revealed that the chemically reversible mutual interconversion between both species was feasible. Likewise, oxidation of the rhenium complex 8 b with [Fc][PF(6)] gave spectroscopic evidence for the formation of a Re analogue of 6 a. Electrochemical studies suggested that the oxidation 8 a-->2 6 a involves two consecutive single-electron-transfer steps, the first of which is electrochemically reversible and produces a metastable radical cation that is detectable by ESR spectroscopy. The mutual interconversion between 6 a and 8 a represents the first case of a reversible coordination isomerization of a phosphaarene that is triggered by a redox process and might stimulate further studies directed at the use of dinuclear phosphaarene complexes in redox-catalysis.  相似文献   

12.
Five phosphorescent metal-anion radical coordination polymers based on a new anion radical ligand generated by in situ deprotonation of a stable zwitterionic radical are described. The N,O,N-tripodal anion radical ligand links metal cations, which leads to five isostructural coordination polymers, [M(3)(bipo(-.))(4)(L)(2)](n) (M=Cd or Mn, Hbipo(-.)=2,3'-biimidazo[1,2-a]pyridin-2'-one, L=Cl(-), HCOO(-) or SCN(-)). The isostructural coordination polymers exhibit novel one-dimensional spirocycle-like structures. Three isostructural Cd(II) coordination polymers display unusual phosphorescent color changes (blue, yellow, and white) induced by terminal anions. Significantly, the Cd(II) coordination polymer with terminal Cl(-) possesses moderate quantum yield, and shows a bright white-light phosphorescence emission, which is independent of excitation wavelength and can even be excited by visible light. Upon adjusting the metal cation to Mn(II), two isostructural Mn(II) coordination polymers reveal deep-blue-light phosphorescence emissions that are independent of terminal anions. As radical-based coordination polymers, some of them show antiferromagnetic interactions between radical species or radical and metal center.  相似文献   

13.
A hybrid compound consisting of palladium(salen) [salen = N,N′‐bis(salicylidene)ethylenediamine] complex covalently linked to a lacunary Keggin‐type polyoxometalate, K8[SiW11O39](POM), was synthesized and characterized by FT‐IR, elemental analysis, inductively coupled plasma and diffuse reflectance UV–visible spectroscopic methods. The hybrid, [Pd(salen)–POM], was investigated in the Suzuki cross‐coupling in EtOH/H2O under mild reaction conditions. In comparison to the corresponding organic and inorganic moiety, the hybrid has shown greatly improved catalytic activity, and much higher yields toward coupling products were obtained with a low catalyst loading for various aryl halides, including unreactive and sterically hindered ones. The catalyst also exhibited prominent recyclable performance and no obvious loss of activity was observed after six consecutive runs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Cryoreduction of the [FeO2]6 (n = 6 is the number of electrons in 3d orbitals on Fe and pi* orbitals on O2) dioxygen-bound ferroheme through irradiation at 77 K generates an [FeO2]7 reduced oxy-heme. Numerous investigations have examined [FeO2]7 centers that have been characterized as peroxo-ferric centers, denoted [FeO2]per7, in which a ferriheme binds a dianionic peroxo-ligand. The generation of such an intermediate can be understood heuristically if the [FeO2]6 parent is viewed as a superoxo-ferric center and the injected electron localizes on the O-O moiety. We here report EPR/ENDOR experiments which show quite different properties for the [FeO2]7 centers produced by cryoreduction of monomeric oxy-hemoglobin (oxy-GMH3) from Glycera dibranchiata, which is unlike mammalian "globins" in having a leucine in place of the distal histidine; of frozen aprotic solutions of oxy-ferrous octaethyl porphyrin; and of the oxy-ferrous complex of the heme model, cyclidene. These [FeO2]7 centers are characterized as "superoxo-ferrous" centers ([FeO2]sup7), with nearly unit spin density localized on a superoxo moiety which is end-on coordinated to a low-spin ferrous ion. This assignment is based on their g tensors and 17O hyperfine couplings, which are characteristic of the superoxide ion coordinated to a diamagnetic metal ion, and on the absence of detectable ENDOR signals either from the in-plane 14N ligands or from an exchangeable H-bond proton. Such a center would arise if the electron that adds to the [FeO2]6 superoxo-ferric parent localizes on the Fe ion, to make a superoxo-ferrous moiety. Upon annealing to T > 150 K, the [FeO2]sup7 species converts to peroxo/hydroperoxo-ferric ([FeO2H]7) intermediates. These experiments suggest that the primary reduction product is [FeO2]sup7 and that the internal redox transition to [FeO2]per7/[FeO2H]7 states is driven at least in part by H-bonding/proton donation by the environment.  相似文献   

15.
In this paper, we demonstrate for the first time the formation of radical anionic peptides [M - 2H]*- through a one-electron transfer mechanism upon low-energy collision-induced dissociation (CID) of gas-phase singly charged [Mn(III)(salen)(M - 2H)]*- complex ions [where salen is N,N'-ethylenebis(salicylideneiminato) and M is an angiotensin III derivative]. The types of fragment ions formed from [M - 2H]*- share some similarities with those from the cationic radical peptides M*+ and [M + H]*2+, but differ significantly from those of the corresponding deprotonated peptides [M - H]-. Fragmentation of [M - 2H]*- radical anionic angiotensin III derivatives leads preferentially to product ions of side-chain cleavage of amino acid residues, z-type and minor x-type fragment ions, most of which are types rarely observed in low-energy CID spectra of deprotonated analogs. The degree of competitive dissociation of the complexes is highly dependent on the nature of the substituted salen derivatives. The yields of anionic peptide radicals were enhanced to the greatest extent when electron withdrawing groups were positioned at the 5 and 5' positions, but the effect was rather modest when such groups resided at the 3 and 3' positions. Substituting a cyclohexyl unit of a salen with phenyl or naphthyl moieties at the 8 and 8' positions also facilitated electron-transfer pathways.  相似文献   

16.
The title compound, (NEt(4))[[Mn(salen)](2)Fe(CN)(6)] (1), was synthesized via a 1:1 reaction of [Mn(salen)(H(2)O)]ClO(4) with (NEt(4))(3)[Fe(CN)(6)] in a methanol/ethanol medium (NEt(4)(+) = tetraethylammonium cation, salen(2)(-) = N,N'-ethylenebis(salicylidene)iminate). The two-dimensional layered structure of 1 was revealed by X-ray crystallographic analysis: 1 crystallizes in monoclinic space group P2(1)/c with cell dimensions of a = 12.3660(8) A, b = 15.311(1) A, c = 12.918(1) A, beta = 110.971(4) degrees, Z = 2 and is isostructural to the previously synthesized compound, (NEt(4))[[Mn(5-Clsalen)](2)Fe(CN)(6)] (5-Clsalen(2-) = N,N'-ethylenebis(5-chlorosalicylidene)iminate; Miyasaka, H.; Matsumoto, N.; Re, N.; Gallo, E.; Floriani, C. Inorg. Chem. 1997, 36, 670). The Mn ion is surrounded by an equatorial salen quadridentate ligand and two axial nitrogen atoms from the [Fe(CN)(6)](3-) unit, the four Fe[bond]CN groups of which coordinate to the Mn ions of [Mn(salen)](+) units, forming a two-dimensional network having [[bond]Mn[bond]NC[bond]Fe[bond]CN[bond]](4) cyclic repeating units. The network is spread over the bc-plane of the unit cell, and the layers are stacked along the a-axis. The countercation NEt(4)(+) is located between the layers. Compound 1 is a ferrimagnet with T(c) = 7.7 K and exhibits hysteresis with a remnant magnetization of 13.44 cm(3).mol(-1) (M/N mu(B) = 2.4) at zero field and a coercivity of 1000 Oe when the powder sample was measured at 1.9 K. Magnetic measurements of a direction-arranged single crystal were also carried out. The orientation of the crystallographic axes of a selected single crystal was determined by X-ray analysis, and magnetization was measured when an external field was applied in the a*, b, and c directions. The magnetization in the a* direction increased more easily than those in the b and c directions below the critical temperature. No hysteresis was observed only for the measurement in the a* direction, indicating the presence of strong structural anisotropy with potential anisotropy on Mn(III) ions.  相似文献   

17.
The charge and spin distribution in manganese‐salen complexes were analyzed using different basis sets and density functionals. Five population analysis methods [Mulliken, Löwdin, Natural population analysis (NPA), atoms in molecules (AIM), and CHelpG] were used to characterize the charge distribution. Results show that NPA and AIM were the only methods capable of giving charges with the correct sign for all cases under study. According to the analysis of the natural charge and spin distributions, the salen ligand shows a complex behavior, counteracting the effect of the chloro and oxo ligands on the metal center. Furthermore, the presence of a chloride counter ion increases the oxo‐radical character of Oxo‐Mn(salen) complexes, which may play an important role in the rationalization of the catalytic properties of Mn(salen) complexes. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
采用量子化学密度泛函理论(DFT)结合自然键轨道(NBO)分析的方法对一系列以多酸为载体的单原子催化剂(SACs)(M1/POM (M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-)的分子几何、电子结构及红外光谱进行计算。结果表明,Pt1/POM对N2分子具有潜在的活化能力,Pt1/POM与N2相互作用主要来自于由金属Pt的dxzdyz轨道与N2π*反键轨道重叠,金属Pt的dxzdyz轨道上的电子填充到了氮气的π*反键轨道上弱化了N≡N成键,导致了N≡N之间的键长增大,有效的活化了氮气分子。对它们红外光谱的分析表明,Keggin型多酸负载金属后W―Oc―W振动吸收峰发生劈裂,产生了五个典型的红外特征吸收峰。  相似文献   

19.
A manganese(III)-substituted polyoxometalate of the "sandwich" structure, [MnIII2ZnW(ZnW9O34)2]10-, catalyzed the highly selective (>99.9%) epoxidation of alkenes, such as 1-octene, 2-octene, and cyclohexene with nitrous oxide. Reactions occurred in homogeneous media at 150 degrees C under 1 atm N2O. The epoxidation had a linear reaction profile; turnover frequencies of 0.5-1.4 h-1 were measured. The reactions were also stereoselective; for example, cis-stilbene gave cis-stilbene oxide. From ESR spectroscopy, it was shown that a Mn(II) octahedral species is reversibly formed by reaction between the original Mn(III) polyoxometalate and N2O. Therefore, it would appear that a Mn(V)-oxo active species is not formed; it is possible that the activation of nitrous oxide was by its oxidation by the Mn(III) polyoxometalate.  相似文献   

20.
With the aim of modeling the arrangement of redox-active and photoactive components along the electron-transfer pathway of photosystem II, tetra- to nonanuclear transition metal complexes have been synthesized, comprising one, two, or three manganese ions, oxidizable phenolates, and tris(2,2'-bipyridyl)ruthenium(II)-type units as photosensitizers. These model complexes are considered to be mononuclear ([LnMn](PF6)m), dinuclear ([L1aMnIV2(mu-O)2](PF6)6), or trinuclear ([LnMnIIMnIIMnIILn](PF6)12) with respect to the number of manganese centers present. Electronic coupling between the manganese ions is strongly antiferromagnetic in the case of the di(mu-oxo)-dimanganese compound [L1aMnIV2(mu-O)2](PF6)6, where the "ligand" [H2L1a]4+ consists of two tris(bipyridyl)ruthenium(II)-type units covalentely bound to a bismacrocyclic Me2dtne backbone to which the manganese ions are coordinated via an additional phenolate oxygen (Me2dtne = 1,2-bis(4-methyl-1,4,7-triazacyclononyl)ethane). Weak antiferromagnetic coupling is observed in compounds [LnMnIIMnIIMnIILn](PF6)12, where the three metals are in a linear arrangement (face-sharing octahedral). They are bridged by three phenolate oxygens of each of the deprotonated "ligands" [H3Ln]6+, respectively. Each ligand [H3Ln]6+ (n = 1, 2) consists of a tacn ring with three pendent arm phenols which are each bound to a tris(bipyridyl)ruthenium(II)-type unit (tacn = 1,4,7-triazacyclononane). In these compounds several electron-transfer steps were detected by electrochemical methods which are assigned to different redox processes located at individual electrochemically active components (Mn, Ru, bipyridyl, phenolate). For example, in the "mononuclear" compounds [LnMn](PF6)m (n = 1 or 2) Mn(II), Mn(III), and Mn(IV) are accessible and three Ru(II) centers are reversibly oxidized to Ru(III), and in addition, the coordinated phenolate can be oxidized to a highly reactive, coordinated phenoxyl radical. In several cases very slow heterogeneous electron-transfer rates were observed for redox processes involving the manganese centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号