首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of fluorescence polarization (FP) has increased significantly in the development of sensitive and robust assays for high throughput screening of chemical compound libraries during the past few years. In this study, we show that FP is a useful assay miniaturization technology for reagent reduction during high throughput screening. We developed and optimized several FP assays for binding to estrogen receptor alpha and two protein kinases with an assay volume of 100 microl. Without any re-optimization, a consistent signal window was maintained in 384- or 1536-well format when the assay volume varied from 2.5-100 microl at constant concentrations of all assay components. In contrast, the signal window decreased with decreasing assay volume at constant reagent concentration in the protein kinase C scintillation proximity assay (SPA) and prompt fluorescence assay. In addition, the effect of evaporation on the signal window was minimal for the FP assays. Our study suggests that FP is superior to SPA and prompt fluorescence in terms of reagent reduction in the miniaturized assay format.  相似文献   

2.
Industrially important enzyme classes such as hydrolases and dehydrogenases are often not amenable to laboratory evolution methods due to a lack of sensitive and reliable high-throughput screening (HTS) systems. We developed a conceptually novel and technically simple high-throughput screening system based on detection of volatile aldehydes with the sensitive reagent Purpald (4-amino-3-hydrazino-5-mercapto-1,2,4-triazole). The aldehyde detection takes place on a filter-paper that is pre-soaked with Purpald and covers the microtiter plate. The filter paper-based Purpald assay separates aldehyde detection from biocatalytical conversion and thereby avoids interferences from biological materials with assay components. This screening principle allows, to our knowledge, for the first time to determine the synthetic activity of hydrolases such as lipases and esterases in organic solvents in a 96-well whole-cell format. Its simplicity and cost-effectiveness make the reported HTS system suitable as fast pre-screen in laboratory evolution experiments and for semi-quantitative assays of improved mutants.  相似文献   

3.
The objective of these studies was to develop a new homogeneous fluorescence assay for determining the concentrations of cAMP in biological samples. The assay is based on a novel general concept of using ligand-dependent sequence-specific DNA binding proteins as sensors for their respective ligands. CAP protein, a bacterial DNA binding protein whose DNA binding activity depends on cAMP, was used to develop the assay. In the presence of cAMP, DNA binding activity of CAP is greatly increased. Signaling of cAMP presence was achieved by detecting cAMP-dependent formation of CAP-DNA complex using a recently developed fluorescence assay for DNA binding proteins (Heyduk, T., and Heyduk, E. Nature Biotechnology 20,171-176, 2002). Both 96-well and 384-well black microplate formats of the assay were developed and used to detect cAMP in low nanomolar concentrations. The assay involves mixing of the sample with the assay solution containing all necessary components for cAMP determination followed by fluorescence intensity readout; no washing or reagent addition steps are necessary. Excellent reproducibility of fluorescence signal change as a function of cAMP concentration was observed. Experiments with HEK 293 cells stimulated with forskolin were performed to demonstrate that the assay could be used for cAMP determination in cellular extracts. In summary, the obtained data fully validated the new homogenous assay for measuring cAMP based on cAMP-dependent DNA binding activity of CAP protein. It is expected that the development of assays for many other ligands of DNA binding proteins will be possible using the same overall assay design developed for cAMP.  相似文献   

4.
The high-throughput assessment of the secondary structures adopted by DNA oligonucleotides is currently hampered by the lack of suitable biophysical methods. Fluorescent sensors hold great potential in this respect; however, the moderate selectivity that they display for one DNA conformation over the others constitutes a major drawback to the development of accurate assays. Moreover, the use of single sensors impedes a comprehensive classification of the tested sequences. Herein, we propose to overcome these limitations through the development of a fluorescence sensor array constituted by easily accessible, commercial dyes. Multivariate analysis of the emission data matrix produced by the array allows the conformational preferences of DNA sequences of interest to be explored, either by calculating the probability of group membership in the six predefined structural categories (three G-quadruplex groups, double-stranded, and two groups of single-stranded forms) or by revealing their particular structural features. The assay enables rapid screening of synthetic DNA oligonucleotides in a 96-well plate format.  相似文献   

5.
The second messenger cAMP has been implicated in numerous cellular processes such as glycogen metabolism, muscle contraction, learning and memory, and differentiation and development. Genetic evidence suggests that the enzyme that produces cAMP, adenylyl cyclase (AC), may be involved in pathogenesis in many of these cellular processes. In addition, these data suggest that membrane-bound ACs may be valuable targets for therapeutics to treat pathogenesis of these processes. The development of a robust real-time adenylyl cyclase assay that can be scalable to high-throughput screening could help in the development of novel therapeutics. Here we report a novel fluorescence-based cyclase assay using Bodipy FL GTPgammaS (BGTPgammaS). The fluorescence of the Bodipy moiety of BGTPgammaS was dramatically enhanced by incubation with the minimal catalytic core of wild-type-AC (wt-AC) and a mutant with decreased purine selectivity (mut-AC), in an AC activation-dependent manner. No increase in fluorescence was observed using Bodipy FL ATPgammaS (BATPgammaS) as substrate for either wt-AC or mut-AC. Using BGTPgammaS, forskolin, Gsalpha.GTPgammaS and the divalent cation Mn(2+) potently enhanced the rate of fluorescence increase in a concentration-dependent manner. The fluorescence enhancement of the Bodipy moiety was inhibited by known inhibitors of AC such as 2'deoxy,3'AMP and 2',5'-dideoxy-3'ATP. Furthermore, the fluorescence assay is adaptable to 96-well and 384-well multiplate format and is thus applicable to high throughput screening methodologies.  相似文献   

6.
Highly selective and sensitive assays are required for detection and quantitation of the small masses of DNA typically encountered in clinical and forensic settings. High detection sensitivity is achieved using fluorescent labeling dyes and detection techniques such as spectrofluorometers, microplate readers and cytometers. This work describes the use of a laser-induced fluorescence (LIF) detector in conjunction with a commercial capillary electrophoresis instrument for DNA quantitation. PicoGreen and YO-PRO-1, two fluorescent DNA labeling dyes, were used to assess the potential of the system for routine DNA analysis. Linearity, reproducibility, sensitivity, limits of detection and quantitation, and sample stability were examined for the two assays. The LIF detector response was found to be linear (R2 > 0.999) and reproducible (RSD < 9%) in both cases. The PicoGreen assay displayed lower limits of detection and quantitation (20 pg and 60 pg, respectively) than the YO-PRO-1 assay (60 pg and 260 pg, respectively). Although a small variation in fluorescence was observed for the DNA/dye complexes over time, quantitation was not significantly affected and the solutions were found to be relatively stable for 80 min. The advantages of the technique include a 4- to 40-fold reduction in the volume of sample required compared to traditional assays, a 2- to 20-fold reduction in the volume of reagents consumed, fast and automated analysis, and low cost (no specific instrumentation required).  相似文献   

7.
A high-throughput screening assay for atom transfer catalysis has been developed. This assay is based on two probes, developed herein, which generate highly fluorescent products upon carbene or oxygen atom transfer. The emission wavelength of probes 1 and 5 shift significantly (up to 90 nm) upon epoxidation, allowing detection of product at 3% conversion. Probe 7 is not fluorescent, while fluorescence emission by carbene insertion/rearrangement product 8 allows detection at less than 1% conversion. Such sensitivity allows for examination of single-bead reactions in a high throughput array format (1536 wells per plate), and provides a broad detection window ranging from single to high turnover numbers. Thousands of metal complexes are evaluated in a single screening experiment. Preliminary screening of a diverse ligand library with probe 7 in the presence of Rh(II) uncovered new catalysts capable of cyclopropanation and C-H insertion.  相似文献   

8.
贵莉莉 《分析测试学报》2016,35(8):1054-1057
设计了一个简单、通用、基于核酸适配体无标记的高敏感、高专一检测凝血酶的荧光方法。以无标记凝血酶核酸适配体单链DNA为识别元素,Pico Green染料传导互补双链的荧光信号。Pico Green是一种不对称菁,当其单独存在时不产生荧光信号,而当其被吸附到互补的双链DNA上时,可产生很强的荧光信号,但被吸附到单链DNA上时,却无明显的信号改变。基于该性质,将其用于凝血酶的检测。该方法对凝血酶的响应线性范围为1.0×10~(-14)~1.0×10~(-7)mol/L,相关系数(r~2)为0.99,检出限为1.0×10~(-14)mol/L。1.0×10~(-8)mol/L两种干扰物质(牛血清蛋白和细胞色素C)的存在不影响凝血酶的检测,表明该方法对凝血酶具有非常好的专一性。该方法成功应用于对人血清样品的检测,其平均回收率为97%~102%。方法可简单、灵敏、特异性地检测凝血酶,有望用于医学临床诊断等领域。  相似文献   

9.
Peng J  Gong L  Si K  Bai X  Du G 《Molecules (Basel, Switzerland)》2011,16(12):10709-10721
A disintegrin and metalloprotease with thrombospondin type I motifs-1 (ADAMTS1) plays a crucial role in inflammatory joint diseases and its inhibitors are potential candidates for anti-arthritis drugs. For the purposes of drug discovery, we reported the development and validation of fluorescence resonance energy transfer (FRET) assay for high-throughput screening (HTS) of the ADAMTS1 inhibitors. A FRET substrate was designed for a quantitative assay of ADAMTS1 activity and enzyme kinetics studies. The assay was developed into a 50-μL, 384-well assay format for high throughput screening of ADAMTS1 inhibitors with an overall Z' factor of 0.89. ADAMTS1 inhibitors were screened against a diverse library of 40,960 total compounds with the established HTS system. Four structurally related hits, naturally occurring compounds, kuwanon P, kuwanon X, albafuran C and mulberrofuran J, extracted from the Chinese herb Morus alba L., were identified for further investigation. The results suggest that this FRET assay is an excellent tool, not only for measurement of ADAMTS1 activity but also for discovery of novel ADAMTS1 inhibitors with HTS.  相似文献   

10.
Label-free Hg2+ aptamer was used as a sensing element and the PicoGreen dye was specific to ultra-sensitive double-stranded DNA (dsDNA), which achieved novel fluorescence assay for detection of both mercury and silver ions. In this aptasensor, Hg2+ bound to thymidine (T) to form T–Hg2+-T base pairs and Ag+ specifically interacted with C–C mismatches to produce C–Ag+–C base pairs. The conformation changes prevented the aptamer from binding to its complementary sequences to form dsDNA and caused a fluorescence intensity decrease with PicoGreen. The change in the fluorescence intensity made it possible to detect both Hg2+ and Ag+ in a dose-dependent manner. The sensing system could detect as low as 5 × 10–8 mol/L of Hg2+ and 9.3 × 10–10 mol/L of Ag+. The fluorescent intensity changes in the system were specific for Hg2+ and Ag+, making this simple and cost-effective method extremely valuable in its future applications in monitoring Hg2+ and Ag+ pollution in environmental analysis.  相似文献   

11.
Deng J  Jin Y  Chen G  Wang L 《The Analyst》2012,137(7):1713-1717
DNA cleavage reaction catalyzed by nucleases is essential in many important biological processes and medicinal chemistry. Therefore, it is important to develop reliable and facile methods to assay nuclease activity. With this goal in mind, we report a fluorescent assay for label-free, facile, and real-time monitoring of DNA cleavage by EcoRI endonuclease using SYBR Green I (SGI) as a signal probe. The fluorescence of SGI dramatically increased when the free SGI was mixed with double-stranded DNA (dsDNA) substrate. Upon interacting with EcoRI, which cleaves the dsDNA into small fragments, the weakened interaction between SGI and the shortened DNA fragments caused a decrease in fluorescence of SGI. EcoRI-DNA interaction was real-time studied by monitoring fluorescence change with the prolonging of interaction time. The important kinetic parameters, including Michaelis-Menten constant (K(M)) and maximum initial velocity (V(max)), were accurately calculated, which is consistent with previously reported studies. Site-specific DNA cleavage by EcoRI endonuclease has also been verified by gel electrophoresis analysis, which indicated that this method is a simple and effective approach to assay DNA cleavage reaction. Specificity investigation demonstrated that EcoRI-DNA interactions can be studied with high selectivity. Compared with previously reported methods, this approach is selective, simple, convenient and cost-efficient without any labeling of the probe or of the target.  相似文献   

12.
A double stranded DNA based fluorescence bioprobe for anticancer agent (doxorubicin) detection is described. This method provides a new way for sensitive DNA/drug interaction study by a homogeneous assay. The probe employs the long-wavelength intercalating fluorophore TOTO-3® (TT3). The anticancer agent, doxorubicin, which interacts with the DNA-TT3 complex, was indirectly measured by the decrease in the fluorescence intensity. Various oligonucleotides with different sequences were examined. Doxorubicin has preference for the oligonucleotide 5′AGCACG3′. Enhanced fluorescence observed for the TT3 intercalation with this oligonucleotide makes the DNA-dye complex a suitable bioprobe for doxorubicin detection by competitive assay. A home-built CCD camera setup was applied along with 384 well plate assay format for high throughput fluorescence imaging. The detection limit can be as low as 25 ng mL−1 with an upper limit of 100 μg mL−1. The recovery test with spiked serum sample shows that this method can be a potential routine method for therapeutic drug monitoring (TDM).  相似文献   

13.
The glycine transporter (GlyT-1b) is a Na(+)/Cl(-)-dependent electrogenic transporter which mediates the rapid re-uptake of glycine from the synaptic cleft. Based on its tissue distribution, GlyT-1 has been suggested to co-localise with the NMDA receptor where it may modulate the concentration of glycine at its co-agonist binding site. This data has led to GlyT-1 inhibitors being proposed as targets for disorders such as schizophrenia and cognitive dysfunction. Radiolabelled uptake assays (e.g. [(3)H]glycine) have been traditionally used in compound screening to identify glycine transporter inhibitors. While such an assay format is useful for testing limited numbers of compounds, the identification of novel glycine uptake inhibitors requires a functional assay compatible with high-throughput screening (HTS) of large compound libraries. Here, the authors present the development of a novel homogenous cell-based assay using the FLIPR membrane potential blue dye (Molecular Devices) and FLEXstation. Pharmacological data for the GlyT-1 inhibitors Org 24598 and ALX 5407 obtained using this novel electrogenic assay correlated well with the conventional [(3)H]-glycine uptake assay format. Furthermore, the assay has been successfully miniaturised using FLIPR(3) and therefore has the potential to be used for high-throughput screening.  相似文献   

14.
Two molecular sensors that specifically recognize ADP in a background of over 100-fold molar excess of ATP are described. These sensors are nucleic-acid based and comprise a general method for monitoring protein kinase activity. The ADP-aptamer scintillation proximity assay is configured in a single-step, homogeneous format while the allosteric ribozyme (RiboReporter) sensor generates a fluorescent signal upon ADP-dependent ribozyme self-cleavage. Both systems perform well when configured for high-throughput screening and have been used to rediscover a known protein kinase inhibitor in a high-throughput screening format.  相似文献   

15.
Coumestrol is a well-known ligand for the estrogen receptor (ER). The compound itself is fluorescent, and its fluorescence intensity at 408?nm increases upon binding to the ER. Here we describe a novel binding assay in 96-well plate format for estrogenic compounds, based on the competition between fluorescent coumestrol and estrogenic compounds for binding to the ligand binding domain (LBD) of the ER-alpha. Displacement of coumestrol was measured as a decrease in fluorescence intensity using a Victor2 1420 multilabel reader. Competitive binding curves for the well-known estrogenic compounds, 17β-estradiol (E2), ethinylestradiol, 4-nonylphenol, 4-octylphenol, genistein, bisphenol A, tamoxifen and diethylstilbestrol were constructed by using 7–10 different concentrations of the compounds and a fixed concentration of ER-α-LBD (14?nmol) and coumestrol (100?nmol). IC50 values and relative potencies (compared to E2) of the estrogenic compounds were determined. The assay was validated by comparing the relative potencies to those from standard radioligand binding assays in the literature. Within day and between day variations were determined and the performance of the assay was assessed by determining the coefficients of variation and Z′ values. The present fluorescent binding assay has proven to be fast and easy, and allows accurately quantifying the binding affinity of estrogenic ligands. The method is also suitable as a high-throughput screening assay for ER ligands.  相似文献   

16.
Full details of the development of a simple, nondestructive, and high-throughput method for establishing DNA binding affinity and sequence selectivity are described. The method is based on the loss of fluorescence derived from the displacement of ethidium bromide or thiazole orange from the DNA of interest or, in selected instances, the change in intrinsic fluorescence of a DNA binding agent itself and is applicable for assessing relative or absolute DNA binding affinities. Enlisting a library of hairpin deoxyoligonucleotides containing all five base pair (512 hairpins) or four base pair (136 hairpins) sequences displayed in a 96-well format, a compound's rank order binding to all possible sequences is generated, resulting in a high-resolution definition of its sequence selectivity using this fluorescent intercalator displacement (FID) assay. As such, the technique complements the use of footprinting or affinity cleavage for the establishment of DNA binding selectivity and provides the information at a higher resolution. The merged bar graphs generated by this rank order binding provide a qualitative way to compare, or profile, DNA binding affinity and selectivity. The 96-well format assay (512 hairpins) can be conducted at a minimal cost (presently ca. $100 for hairpin deoxyoligonucleotides/assay with ethiduim bromide or less with thiazole orange), with a rapid readout using a fluorescent plate reader (15 min), and is adaptable to automation (Tecan Genesis Workstation 100 robotic system). Its use in generating a profile of DNA binding selectivity for several agents including distamycin A, netropsin, DAPI, Hoechst 33258, and berenil is described. Techniques for establishing binding constants from quantitative titrations are compared, and recommendations are made for use of a Scatchard or curve fitting analysis of the titration binding curves as a reliable means to quantitate the binding affinity.  相似文献   

17.
A multiplexed assay strategy was developed for the detection of nucleic acid hybridization. It is based on fluorescence resonance energy transfer (FRET) between gold nanoparticles (AuNPs) and multi-sized quantum dots (QDs) deposited on the surface of silica photonic crystal beads (SPCBs). The SPCBs were first coated with a three-layer primer film formed by the alternating adsorption of poly(allylamine hydrochloride) and poly(sodium 4-styrensulfonate). Probe DNA sequences were then covalently attached to the carboxy groups at the surface of the QD-coated SPCBs. On addition of DNA-AuNPs and hybridization, the fluorescence of the donor QDs is quenched because of the close proximity of the AuNPs. However, the addition of target DNA causes a recovery of the fluorescence of the QD-coated SPCBs, thus enabling the quantitative assay of hybridized DNA. Compared to fluorescent dyes acting as acceptors, the use of AuNPs results in much higher quenching efficiency. The multiplexed assay displays a wide linear range, high sensitivity, and very little cross-reactivity. This work, where such SPCBs are used for the first time in a FRET assay, is deemed to present a new and viable approach towards high-throughput multiplexed gene assays.
Figure
A novel fluorescence energy transfer system was constructed for the multiplexed hybridization assay using gold nanoparticles and quantum dot conjugates on silica photonic crystal beads  相似文献   

18.
We have developed a fully enzyme-free SERRS hybridization assay for specific detection of double-stranded DNA sequences. Although all DNA detection methods ranging from PCR to high-throughput sequencing rely on enzymes, this method is unique for being totally non-enzymatic. The efficiency of enzymatic processes is affected by alterations, modifications, and/or quality of DNA. For instance, a limitation of most DNA polymerases is their inability to process DNA damaged by blocking lesions. As a result, enzymatic amplification and sequencing of degraded DNA often fail. In this study we succeeded in detecting and quantifying, within a mixture, relative amounts of closely related double-stranded DNA sequences from Rupicapra rupicapra (chamois) and Capra hircus (goat). The non-enzymatic SERRS assay presented here is the corner stone of a promising approach to overcome the failure of DNA polymerase when DNA is too degraded or when the concentration of polymerase inhibitors is too high. It is the first time double-stranded DNA has been detected with a truly non-enzymatic SERRS-based method. This non-enzymatic, inexpensive, rapid assay is therefore a breakthrough in nucleic acid detection.  相似文献   

19.
Yue GH  Orban L 《Electrophoresis》2005,26(16):3081-3083
We have developed a very simple and inexpensive method for high-throughput DNA extraction from animal tissues. The procedure contains three steps (digestion, heating, and centrifugation) and it is compatible with the 96-well plate format commonly used in polymerase chain reaction (PCR) amplifications. The duration for processing a plate is about 1.5 h; therefore, one researcher can isolate DNA from up to 1000 samples during a single workday. A small piece of tissue (ca. 10-20 mg) yields enough template for at least 50-70 PCR amplifications, as demonstrated by using the processed samples as templates successfully for long distance PCR, multiplex PCR, and randomly amplified polymorphic DNA (RAPD) assay. The application of our method is expected to facilitate studies that require high-throughput DNA isolation for PCR amplification, such as genotyping by microsatellites for mapping and genetic diversity studies, as well as mutant screening in zebrafish.  相似文献   

20.
L Wang  Y Cheng  H Wang  Z Li 《The Analyst》2012,137(16):3667-3672
Based on the high efficiency of fluorescence quenching and the different affinities of water-soluble carbon nanoparticles (CNPs) towards single-stranded DNA (ssDNA) and double-stranded DNA/RNA hybrid, a novel, rapid and cost-effective assay for detection of microRNA and nuclease activity was developed. The fluorescein-labeled ssDNA probe (FAM-P) could be adsorbed on the surface of CNPs through π-π stacking interaction giving rise to fluorescence quenching. By introduction of microRNA complementary to the DNA probe, the double-stranded DNA/miRNA hybrid could be formed and released from the surface of CNPs resulting in the fluorescence recovery. Thus, microRNA was successfully detected in homogenous fashion without any amplification or enzyme-involving reactions. Moreover, we demonstrated that the nuclease activities of RNase H and DNase I could also be sensitively monitored by using CNPs based on the fluorescence changing of the DNA probe. So, the CNPs provide an excellent homogeneous sensing platform for studying molecular diagnosis and therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号