共查询到16条相似文献,搜索用时 46 毫秒
1.
利用热线风速仪,对光滑表面和多个脊状表面在低速风洞中进行了表面流场测试。基于测得的边界层速度分布数据,利用对数律区速度分布公式,编程分别计算出光滑表面和脊状表面的壁面摩擦速度和虚拟原点。研究发现,脊状表面最大减阻量达13.5%;有减阻效果的脊状表面使边界层速度曲线上移、湍流强度下降;与光滑表面相比,脊状表面的位移厚度和动量损失厚度明显减小,也表明脊状表面具有减阻效果;位移厚度和动量损失厚度减少量随槽间距s^+的增加呈现先变大后变小的趋势,在S^+=12时达到最大。 相似文献
2.
脊状表面减阻机理研究 总被引:2,自引:1,他引:1
针对脊状表面流场的特点,通过实验测量和数值模拟的方法对脊状表面微观流场进行了深入研究,获得了脊状表面湍流边界层的时均速度分布曲线、湍流度分布曲线和微观流场结构.为了得到脊状结构对壁面物性的影响,对脊状表面进行了疏水性测试,获得了液滴在脊状表面上的表观接触角,并通过水洞试验验证了脊状表面的减阻效果.研究表明,与光滑表面相比,脊状表面微观流场结构中存在\"二次涡\",近壁区的黏性底层厚度比平板的要厚得多,湍流度显著降低,且脊状表面表现出明显的疏水性.由此提出了基于壁面隔离效应、增大湍流阻尼效应和改变壁面物性效应的减阻机理. 相似文献
3.
针对航行器提高航程和航速的需要,开展脊状表面湍流边界层减阻的实验和数值仿真研究。在航行器模型的外表面加工具有特定形状、尺寸的脊状结构,导致湍流边界层的流动稳定性增强,壁面摩擦阻力降低。在风洞中对具有光滑表面和脊状表面的航行器模型在不同风速和攻角下进行阻力测试,得到其减阻特性曲线。实验结果表明,具有横向脊状表面的航行器模型在一定来流速度范围内具有很好的减阻效果,实验获得的最大减阻量为23.5%。数值仿真结果则发现,在脊状结构内形成了稳定的\"二次涡\",边界层内湍动能和湍流猝发强度降低,很好地揭示了减阻机理。 相似文献
4.
论述了在西北工业大学低湍流度风洞中采用新型等离子激励器对NACA0015翼型的减阻实验.实验风速为35m/s,攻角范围取0°~20°.并参照压力分布和总压分布实验结果对减阻效果进行了对比分析.本文还进行了有关等离子体激励抑制翼型流动分离的数值模拟研究,基于等离子体激励器的简化模型将体积力以源项方式引入到N-S方程中求解,得到激励器工作时的流场分布.结果表明在新型等离子体激励器开启后:在小攻角范围内,尾耙的总压分布曲线与坐标轴的纵轴(尾耙高度轴)所围面积变化不大;当攻角≥12°时,尾耙的总压分布曲线与坐标轴的纵轴(尾耙高度轴)所围面积明显减小.从而说明该新型等离子体激励器能够有效地减少翼型的阻力. 相似文献
5.
6.
在低速风洞中来流速度一定的情况下使用IFA300恒温热线风速仪测量了光滑表面和两种不同尺寸的脊状表面湍流边界层平均速度分布剖面,并验证了试验段湍流发展的充分性;通过应用Spalding壁面公式使用最小二乘法精准拟合了实验测量的边界层内层速度分布曲线,得到了湍流边界层壁面摩擦速度并进一步求得湍流壁面摩擦应力,较准确地计算出脊状表面的虚拟原点位置,并通过与对数律公式拟合结果比较分析,证实了该方法更加准确有效. 最后分别计算了3种实验模型的湍流边界层动量损失厚度. 通过对比脊状表面与光滑表面动量损失厚度和壁面摩擦应力,反映了动量损失厚度的大小与壁面摩擦应力的大小具有一致性,充分证实了脊状表面在湍流中具有一定的减阻效果. 相似文献
7.
随着全球能源危机日益加剧, 流动减阻研究引起众多学者注意. 超疏水微槽道内表面的层级结构有助于形成气液界面, 从而实现减阻, 但亲水微槽道内表面层级结构的减阻特性尚不清楚. 文章结合数值模拟和实验研究, 对亲水微槽道内空间立柱结构(transverse post structure, TPS)、二次内凹的空间立柱结构(doubly reentrant transverse post structure, DR-TPS)和二次内凹的微脊结构(doubly reentrant surface groove structure, DR-SGS), 共3种表面层级结构的减阻特性进行了研究. 研究发现, 当气液界面稳定时, 3种结构均有一定的减阻效果, 其中, TPS和DR-TPS减阻效果相似, DR-SGS减阻效果最好, 减阻率最高可达11.8%. 经模拟发现, TPS和DR-TPS减阻效果低于DR-SGS的原因是它们的层级结构附近存在涡结构, 造成了局部增阻. 此外, 流速对于3种结构的减阻效果也有影响, 当流速较大时, 结构中的气液界面容易失稳, 从而使减阻效果减弱甚至出现增阻现象, TPS, DR-TPS和DR-SGS 3种结构维持气液界面稳定的能力依次增强. 相似文献
8.
超疏水表面的优异性质使其在现代生活和工业生产中具有十分广泛的潜在应用价值. 本文采用了碳纳米管缠绕技术和聚氟硅氧烷疏水化处理方法制备了具有二级微纳米结构的超疏水表面. 测量了由该超疏水表面构建的槽道中的流动压降,将其与普通表面构建的槽道内的流动压降进行比较,发现在层流情况下,流动阻力减小最多达到了22.8%. 在湍流的情况下,超疏水表面的减阻比例约为53.3%,减阻效果比层流更加明显.利用PIV (particle image velocimetry) 技术测量了具有超疏水表面的槽道内的速度场,通过超疏水表面速度滑移和湍动脉动场信息,分析了湍流减阻效果比层流更加明显的物理机制. 相似文献
9.
翼型空化绕流数值研究 总被引:2,自引:0,他引:2
空化是发生在流体机械上的复杂过程,理论研究遇到很大困难.本文引入合适的空化数值模型,将空腔界面近似为自由面,用界面构造精度较高的流体体积方法求解空腔位置,通过直接求解原始变量的NavierStokes方程,数值模拟了无界域中空化在翼型上发生、发展和脱落的周期过程;并分析了空化产生对翼型表面的压力分布、翼型收到的阻力和升力的影响.结果表明,空化出现在翼型上表面;由于空化的产生,翼型表面压力分布不稳定,导致升力、阻力和流场压力出现波动,这是实际中产生噪声和损失的主要原因. 相似文献
10.
表面活性剂减阻溶液湍流流动研究进展 总被引:2,自引:0,他引:2
与聚合物添加剂相比,表面活性剂具有寿命长,不受机械力和高温影响发生降解的特点,目前被认为是最具有适用价值的减阻添加剂.针对表面活性剂湍流减阻机理,尽管已经开展了大量的实验研究、理论分析和数值模拟,但仍处于探索阶段,尚未定论.文中对目前国内外有关表面活性剂减阻溶液湍流流动的研究如平均速度、湍流强度、雷诺应力和相关系数等湍流统计量以及取得的成果进行了归纳和总结.目前普遍认为阻力减小是由流动垂直方向的湍流强度受抑和脉动速度分量解耦导致雷诺应力极大降低引起的.分析了目前研究存在的问题,对今后继续开展研究提出了自己的观点. 相似文献
11.
S. A. Takovitskii 《Fluid Dynamics》2003,38(6):933-941
A solution of the problem of optimization of an airfoil in a supersonic flow is proposed. A symmetric airfoil with minimum wave drag for a given longitudinal cross-sectional area is constructed within the framework of a local analysis of variations of the shape with respect to the exact solution for a wedge and a rhombus. Analytic dependences representing the shape of the airfoil and its drag are found. The solution obtained is tested numerically within the framework of the Euler model. 相似文献
12.
Experimental evidence is given that drag reducing polymer molecules are preferentially collected by strained vortices. This can explain why extremely small amounts of additives can be so effective. They become concentrated in areas of a turbulent flow where they are most efficient. 相似文献
13.
低雷诺数俯仰振荡翼型等离子体流动控制 总被引:2,自引:2,他引:0
针对低雷诺数翼型气动性能差的特点, 通过介质阻挡放电(dielectric barrier discharge, DBD)等离子体激励控制的方法, 提高翼型低雷诺数下的气动特性,改善其流场结构. 采用二维准直接数值模拟方法求解非定常不可压Navier-Stokes方程,对具有俯仰运动的NACA0012翼型的低雷诺数流动展开数值模拟.同时将介质阻挡放电激励对流动的作用以彻体力源项的形式加入Navier-Stokes方程,通过数值模拟探究稳态DBD等离子体激励对俯仰振荡NACA0012翼型气动特性和流场特性的影响.为了进行流动控制, 分别在上下表面的前缘和后缘处安装DBD等离子体激励器,并提出四种激励器的开环控制策略,通过对比研究了这些控制策略在不同雷诺数、不同减缩频率以及激励位置下的控制效果.通过流场结构和动态压强分析了等离子体进行流场控制的机理. 结果表明,前缘DBD控制中控制策略B(负攻角时开启上表面激励器,正攻角时开启下表面激励器)效果最好,后缘DBD控制中控制策略C(逆时针旋转时开启上表面激励器,顺时针旋转时开启下表面激励器)效果最好,前缘DBD控制效果会随着减缩频率的增大而下降, 同时会导致阻力增大.而后缘DBD控制可以减小压差阻力, 优于前缘DBD控制,对于计算的所有减缩频率(5.01~11.82)都有较好的增升减阻效果.在不同雷诺数下, DBD控制的增升效果较为稳定, 而减阻效果随着雷诺数的降低而变差,这是由流体黏性效应增强导致的. 相似文献
14.
15.
16.
With a new visualization technique, a strong suppression of small scale coherent structures (filaments) in turbulence is observed when a drag reducing polymer is added. Simultaneously, the rate of formation of large scale structures (eddies) out of these filaments decreases, which may be an important observation in the explanation of turbulent drag reduction. 相似文献