首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of indirect spectrophotometric detection was investigated for a capillary electrochromatographic system in which an anion-exchange stationary phase (in the form of aminated latex particles) was coated onto the wall of a fused-silica capillary. The study has focused on the choice of the type and concentration of the absorbing coion (probe) added to the background electrolyte and the role of this species in manipulating the ion-exchange contributions to the separation with a view to controlling the selectivity of the separation. Common inorganic anions were used as analytes and nitrate, p-toluenesulfonate, nicotinate, and chromate were investigated as probes. It was found that most of these probes produced only a limited range of separation selectivities when their concentration was varied over the practically accessible range. p-Toluenesulfonate provided the greatest variation in selectivity, but peak distortion due to electromigration dispersion was evident for the faster ions. When variation of the separation selectivity - from predominantly electrophoretic in nature to predominantly ion-exchange in nature - was desired, this was best achieved by varying the type of probe rather than its concentration. For example, the nitrate probe provided predominantly electrophoretic separations with good peak shapes and high efficiencies. A comprehensive list of probes, ranked in order of ion-exchange selectivity coefficients determined by ion chromatography, was compiled and this proved to be a useful tool to assist in the selection of a probe for a desired separation selectivity. The limits of detection for the analytes and probes studied ranged from 20-55 micromol for the chromate system to 230-600 micromol for the nicotinate system, with nitrate and p-toluenesulfonate giving intermediate values.  相似文献   

2.
The feasibility of using capillary columns equipped with silica frits and packed with a polymer-based anion exchanger (Dionex AS9-HC) for CEC separations of inorganic anions has been investigated. Experiments using a conventional 25 cm packed bed, and mobile phase flow that is a combination of hydrodynamic and electroosmotic flow were used to demonstrate that by varying the applied voltage (electrophoresis component) or the concentration of the competing ion in the mobile phase (ion-exchange component), considerable changes in the separation selectivity could be obtained. Using an artificial neural network, this separation system was modelled and the results obtained used to determine the optimum conditions (9 mM perchlorate and −10 kV) for the separation of eight inorganic anions. When a short (8 cm) packed bed was used, with detection immediately following the packed section, the separation of eight test analytes in under 2.2 min was possible using pressure-driven flow and a simple step voltage gradient. A more rapid separation of these analytes was obtained by only applying high voltage (−30 kV), where many of the same analytes were separated in less than 20 s and with a different separation selectivity to that obtained in conventional ion-exchange or capillary electrophoresis separations.  相似文献   

3.
The separation of a complex mixture of inorganic and organic anions by ion chromatography–capillary electrophoresis using a cationic polymer added to the background electrolyte and indirect UV detection has been studied. The addition of unmodified polymer to an electrolyte suitable for indirect detection resulted in the appearance of a system peak due to the counter-anion on the polymer and while the position of the analytes relative to this system peak could be changed, this was found to be an unacceptable approach for mixtures of large numbers of analytes. Although conversion of the polymer to replace the counter-ion with the indirect UV detection probe ion simplified the system, this approach restricted the flexibility of the system because the probe and polymer concentration were necessarily linked. This limitation could be overcome by selecting the appropriate type of probe ion, with probes having a low ion-exchange selectivity coefficient providing greater retention of analytes than probes with a high ion-exchange selectivity coefficient. Three electrolyte systems with different probes (benzoate, chromate and phthalate) were modelled using a previously derived migration equation and this was used to optimise the electrolyte composition to enable the separation of a mixture of 24 inorganic and organic anions within 7 min. The electrolyte composition was then optimised for the analysis of anions in Bayer liquor with the final separation selectivity being substantially improved for selected key analytes.  相似文献   

4.
Fast ion-exchange chromatography has been developed and applied to the separation of common inorganic anions. Using a didodecyldimethylammonium bromide (DDAB) coated short (30 mm x 4.6 mm) ODS analytical column (3-microm particle size) and a 5 mM phthalate eluent (pH 7.5) the isocratic separation of nine common anions in 160 s was possible, with the first seven anions, including phosphate, chloride and sulphate, separated within 65 s. Detection was achieved using indirect UV at 279 nm. The high capacity, highly hydrophobic ion-exchange coating demonstrated excellent stability over time, even at elevated temperatures (45 degrees C) and exhibited unusual selectivity for common anions (retention order=fluoride, carbonate, phosphate, chloride, bromate, nitrite, sulphate, bromide and nitrate). The developed chromatography was successfully applied to the rapid analysis of river water and seawater samples.  相似文献   

5.
A contactless conductometric detection (CCD) system for capillary electrophoresis (CE) with a flexible detection cell was applied for the simultaneous determination of small anions and/or cations in rain, surface and drainage water samples. The applied frequency, the amplitude of the input signal, the electrolyte conductivity and electrode distance were found to be the most significant factors affecting the detection sensitivity. 2-(N-Morpholino)ethanesulfonic acid/histidine-based (MES/His) electrolytes were used for direct conductivity detection of anions and cations, while ammonium acetate was selected for indirect conductivity determination of alkylammonium salts. For the simultaneous separation procedure, involving dual-opposite end injection, an electrolyte consisting of 20 mM MES/His, 1.5 mM 18-crown-6 and 20 microM cetyltrimethylammonium bromide provided baseline separation of 13 anions and cations in less than 6 min. The detection limits achieved were 7-30 micrograms/l for direct conductometric detection of various common inorganic cations and anions, excluding F- (62 micrograms/l) and H2PO4- (250 micrograms/l), and 35-178 micrograms/l for indirect conductometric detection of alkyl ammonium cations. The developed electrophoretic method with conductometric detection was compared to ion chromatography.  相似文献   

6.
Johns C  Macka M  Haddad PR 《Electrophoresis》2004,25(18-19):3145-3152
Indirect photometric detection in capillary electrophoresis (CE) has been predominantly performed in the UV region, in part due to a lack of suitable high-intensity and low-noise light sources in the visible spectral region. A new photometric detector based on light-emitting diodes (LEDs) as light sources and compatible with a commercially available CE instrument has been designed and constructed and its performance evaluated. The utility of this detector was successfully demonstrated by the indirect photometric detection of anions using a dye as probe and absorbance measured in the visible region. The detector exhibited very low baseline noise (around 0.03 mAU), stable output, and improved upper limit of detection linearity (502 mAU) compared with previously used LED detectors. The detector was tested for indirect detection of anions separated with an electrolyte containing 4 mM Orange G as the indirect detection probe, 10 mM histidine as an isoelectric buffer, and 0.05% hydroxypropylmethylcellulose to suppress the electroosmotic flow. Extremely low detection limits were obtained ranging from 0.16-0.36 microM (excluding chloride 0.56 microM), with separation efficiencies in the range of 154,000-274,000 theoretical plates.  相似文献   

7.
In this paper, a simple method for the separation and determination of common inorganic anions by fast ion-exchange chromatography, using a modified short (25 mm x 4.6 mm) monolithic column, is reported. Coating the column with a cationic surfactant, cetylpyridinium chloride (CPC), the isocratic separation of some inorganic anions in minutes was possible, by direct or indirect UV detection. The coated column demonstrated excellent stability over time, even at a high flow-rate, giving retention times with an average relative standard deviation of 1.3% for over 10 consecutive runs. The developed column exhibited unusual selectivity for common anions, was successfully applied to the rapid analysis of inorganic anions of food samples, river water and factory waste water samples.  相似文献   

8.
Short permanently coated reversed-phase silica based monolithic columns have been investigated for the rapid separation of inorganic anions and cations. One 2.5 x 0.46 cm column was permanently coated with didodecyldimethylammonium (DDAB), for anion analysis; and a second 5.0 x 0.46 cm column was coated with dioctylsulphosuccinnate (DOSS), for cation analysis. The use of a single combined eluent of 2.5 mM phthalate/1.5 mM ethylenediamine, at flow rates of between 4.0 and 8.0 mL/min, resulted in the rapid separation of 8 anions (in under 100 s) and 5 cations (in under 100 s) on the above columns when used individually, with detection limits for common anions ranging from approximately 0.25 to 5 mg/L, and between 2.5 and 50 mg/L for alkaline earth metals, by direct and indirect conductivity detection, respectively. However, with both columns subsequently connected in parallel, with the eluent delivered using a flow splitter from a single isocratic pump, the simultaneous analysis of anions and cations was also possible, based on a single conductivity detector. The potential of this system for the rapid, complete screening of water samples for multiple common anions and cations is shown.  相似文献   

9.
Silica monoliths coated with functionalised latex particles have been prepared for use in monolithic ion-exchange capillary electrochromatography (IE-CEC) for the separation of inorganic anions. The ion-exchange monoliths were prepared using 70 nm quaternary ammonium, anion-exchange latex particles, which were bound electrostatically to a monolithic silica skeleton synthesised in a fused silica capillary. The resulting stationary phases were characterised in terms of their chromatographic performance and capacity. The capacity of a 50 microm diameter 25 cm latex-coated silica monolith was found to be 0.342 nanoequivalents and 80,000 theoretical plates per column were typically achieved for weakly retained anions, with lower efficiency being observed for analytes exhibiting strong ion-exchange interaction with the stationary phase. The electroosmotic flow (EOF) was reversed after the latex-coating was applied (-25.96 m2 V(-1) s(-1), relative standard deviation (RSD) 2.8%) and resulted in anions being separated in the co-EOF mode. Ion-exchange interactions between the analytes and the stationary phase were manipulated by varying the ion-exchange selectivity coefficient and the concentration of a competing ion (phosphate or perchlorate) present in the electrolyte. Large concentrations of competing ion (greater than 1M phosphate or 200 mM perchlorate) were required to completely suppress ion-exchange interactions, which highlighted the significant retention effects that could be achieved using monolithic columns compared to open tubular columns, without the problems associated with particle-packed columns. The latex-coated silica monoliths were easily produced in bulk quantities and performed reproducibly in acidic electrolytes. The high permeability and beneficial phase ratio makes these columns ideal for micro-LC and preconcentration applications.  相似文献   

10.
Novel CE methods have been developed on portable instrumentation adapted to accommodate a capacitively coupled contactless conductivity detector for the separation and sensitive detection of inorganic anions and cations in post‐blast explosive residues from homemade inorganic explosive devices. The methods presented combine sensitivity and speed of analysis for the wide range of inorganic ions used in this study. Separate methods were employed for the separation of anions and cations. The anion separation method utilised a low conductivity 70 mM Tris/70 mM CHES aqueous electrolyte (pH 8.6) with a 90 cm capillary coated with hexadimethrine bromide to reverse the EOF. Fifteen anions could be baseline separated in 7 min with detection limits in the range 27–240 μg/L. A selection of ten anions deemed most important in this application could be separated in 45 s on a shorter capillary (30.6 cm) using the same electrolyte. The cation separation method was performed on a 73 cm length of fused‐silica capillary using an electrolyte system composed of 10 mM histidine and 50 mM acetic acid, at pH 4.2. The addition of the complexants, 1 mM hydroxyisobutyric acid and 0.7 mM 18‐crown‐6 ether, enhanced selectivity and allowed the separation of eleven inorganic cations in under 7 min with detection limits in the range 31–240 μg/L. The developed methods were successfully field tested on post‐blast residues obtained from the controlled detonation of homemade explosive devices. Results were verified using ion chromatographic analyses of the same samples.  相似文献   

11.
In capillary electrophoresis (CE) analysis of small inorganic anions, the ability to control the electroosmotic flow (EOF) and the ability to alter the electrophoretic mobility of the ions are essential to improve resolution and separation speed. In this work, a CE method for separation of small inorganic anions using indirect detection in mixed methanol/water buffers is presented. The suitability of different UV absorbing probes commonly used for indirect detection including chromate, iodide, phthalate, benzoate, trimellitate, and pyromellitate, in mixed methanol/water buffers is examined. The effect of the electrolyte buffer system, including the pH, buffer concentration and the organic solvent on the electrophoretic mobility of the probes and analytes are also investigated. The EOF was reversed using cationic surfactant, cetyltrimethylammonium bromide (CTAB) so ions were separated under co-EOF mode. The organic solvent alters the electrophoretic mobility of the probes and the analytes differently and hence choice of the appropriate probe is essential to achieve high degree of detection sensitivity. Separations of six anions in less than 2.5 min were accomplished in buffers containing up to 30% MeOH. Adjustment of the methanol content helps to improve the selectivity and resolution of inorganic anions. Limit of detection, reproducibility and application of the method for quantification of anions in water samples will also be discussed.  相似文献   

12.
2,6-Pyridinedicarboxylic acid (PDCA) was evaluated as an eluent for indirect UV and non-suppressed conductivity detection of carboxylic acids in ion-exclusion chromatography. The effect of PDCA concentration on the separation and detection sensitivity was investigated. The reasonable resolutions between carboxylic acids were achieved using 1 mM PDCA eluent. Detection limits were 1.0-7.0 microM for conductivity detection and 8-30 microM for UV detection. Compared to the eluent containing 1 mM sulfuric acid, the method offers a high resolution and high detection sensitivity for both detectors due to its high molar absorptivity and low background conductance. The proposed method was demonstrated to be useful for the determination of carboxylic acids in environmental samples with direct sample injection.  相似文献   

13.

Co-electroosmotic capillary electrophoresis (co-CZE) with both direct and indirect UV detection was investigated for the separation of sulfur species. With direct UV detection, the separation of S2O2? 3, S2O2? 4 was possible using 20 mM phosphate electrolyte containing 0.75 mM tetradecyltrimethylammonium bromide (TTAB) and 15% acetonitrile. To obtain optimal peak shape and sensitivity using indirect UV detection, a range of background electrolytes (BGEs), including benzoate, phthalate, 2,6-pyridinedicarboxylate (2,6-PDCA) and trimellitate, were examined as the BGEs. Of all the BGEs, 2,6-PDCA gave high selectivity and indirect UV response due to its mobility matching to that of sulfur species and its high absorptivity. Detection limits in range of 3-6 μM were obtained using either direct UV or indirect UV detection. The proposed CZE methods were used for the determination of sulfur species in water samples, and provided fast separation of sulfur species in less than 5 min.  相似文献   

14.
Ye M  Zou H  Liu Z  Ni J 《Journal of chromatography. A》2000,869(1-2):385-394
Separation of small peptides on ion-exchange capillary electrochromatography (IE-CEC) with strong cation-exchange packing (SCX) as stationary phase was investigated. It was observed that the number of theoretical plates for small peptides varied from 240000 to 460000/m, and the relative standard deviation for t0 and the migration time of peptides were less than 0.57% and 0.27%, respectively for ten consecutive runs. Unusually high column efficiency has been explained by the capillary electrophoretic stacking and chromatofocusing phenomena during the injection and separation of positively charged peptides. The sample buffer concentration had a marked effect on the column efficiency and peak area of the retained peptides. The influences of the buffer concentration and pH value as well as the applied voltage on the separation were investigated. It has been shown that the electrostatic interaction between the positively charged peptides and the SCX stationary phase played a very important role in IE-CEC, which provided the different separation selectivity from those in the capillary electrophoresis and reversed-phase liquid chromatography. A fast separation of ten peptides in less than 3.5 min on IE-CEC by adoption of the highly applied voltage was demonstrated.  相似文献   

15.
A CE method employing capacitively coupled contactless conductivity (C(4)D) compared to indirect UV-detection was developed for the analysis of phytochemically relevant flavonoids, such as 6-hydroxyflavone, biochanin A, hesperetin and naringenin. To ensure fast separation at highest selectivity, sensitivity and peak symmetry, the pH value and the concentration of the running BGE had to be optimized regarding both co- and counter-EOF mode. Optimum conditions were found to be 1.0 and 5.0 mM chromate BGE (pH 9.50) in the counter- and co-EOF mode, respectively. Validation of the established CE-C(4)D method pointed out to be approximately seven times more sensitive compared to indirect UV-detection applying the same conditions. The lower LOD defined at an S/N of 3:1 was found between 0.12 and 0.21 microg/mL for the analytes of interest using C(4)D and between 0.77 and 1.20 microg/mL using indirect UV-detection. Compared to an earlier published CE method employing direct UV-detection, C(4)D was found to be approximately two times more sensitive. Due to the lower baseline noise, C(4)D showed an excellent regression coefficient >0.99 compared to 0.93 when using indirect UV detection calibrating within a concentration range between 1 and 10 microg/mL. The influence of the sugar moiety on the conductivity of a flavonoid was studied upon the analysis of the aglycon hesperetin and the rutinosid hesperidin. The sugar moiety in hesperedin shows a higher conductivity compared to hesperetin. Finally, the optimized established CE-C(4)D method was applied to the determination and quantification of naringenin in Sinupret.  相似文献   

16.
A particle beam interface was investigated for coupling ion chromatography with mass spectrometric detection. Several prerequisites must be fulfilled, including mobile phases containing volatile buffers and high amounts of organic solvents at low flow-rates. Microcolumns with inner diameters between 130 and 1000 μm (packed with a silica-based anion-exchange material) in combination with a microflow aerosol generator meet these requirements. Organic solvetns in the mobile phase lead to considerable changes in separation selectivity, so that the retention order can be partly reversed in comparison with aqueous mobile phases. The performance of the interface and the mass spectrometric detection has been studied for a series of inorganic anions as well as for aminopolycar☐ylic acids and their metal complexes. The detection limits are between 10 and 100 ng injected and are significantly poorer than those for conductivity detection. On the other hand, the possibility of operating the detector at pre-selected masses greatly improves the selectivity of the analysis and helps to confirm peaks from a non-selective conductivity detector. On-line and off-line preconcentration techniques allow the detection of anions in drinking water at ppb levels.  相似文献   

17.
The ability to monitor and quantify anionic components of aerosols is important for developing a better fundamental understanding of temporal and spatial variations in aerosol composition. Of the many methods that can be used to detect anions, capillary electrophoresis is among the most attractive ones because of its high separation efficiency, high resolving power for ionic compounds, and ability to be miniaturized for in-field monitoring. Here we present a method to baseline resolve common aerosol components nitrate, sulfate, chloride, and over two dozen organic acids in a single separation. A capillary electrophoresis separation utilizing a pH 5.78 piperazine buffer with 1,5-naphthalenedisulfonic acid as a probe for indirect UV absorbance detection was developed for this analysis. Previously, two different buffers were required to adequately separate all of these compounds. Electrophoretic mobilities, limits of detection, and migration time reproducibilities were measured for 38 organic and 8 inorganic anions. For solutions of low conductivity, detection limits for electrokinetic injections were found to be up to two orders of magnitude lower (0.2-0.4 microM) than those for pressure injection (1-45 microM). This separation was optimized and used for routine analysis of aqueous extracts of ambient atmospheric aerosols, but may be extended to other samples containing similar mixtures of anions.  相似文献   

18.
A blue (452 nm) frequency-doubled diode laser with a quasi-cw optical output power of 10 microW is used for indirect laser-induced fluorescence detection in combination with the capillary electrophoretic separation of inorganic anions. As fluorescing probe ion the anion of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) was selected having an absorption maximum of 454 nm in alkaline medium. Employing a capillary coated with linear acrylamide, baseline separation of eight inorganic anions was possible within 5 min. With a separation buffer containing 50 micromol.L(-1) HPTS and 10 mmol.L(-1) lysine the limits of detection for sulfate, nitrite, nitrate, azide, thiocyanate, and chlorate were between 0.9 and 4.7 micromol.L(-1). Separation of chloride and sulfate was achieved by adding 0.25 mmol.L(-1) calcium hydroxide to the separation buffer. Inorganic anions in several mineral and tap water samples have been determined with the technique developed and results are compared to data obtained by ion chromatography in combination with conductivity detection after conductivity suppression.  相似文献   

19.
N-Methylpyrrolidine in cefepime for injection was determined by capillary electrophoresis with indirect UV detection. Best results were achieved with background electrolyte consisting of 10 mM creatinine adjusted to pH 3.8 with formic acid and an applied voltage of 30 kV in a bare fused-silica capillary. Indirect UV detection was performed at a wavelength of 225 nm. The application of a small amount of inlet pressure during the separation assisted the attainment of a stable baseline. The optimized method was validated regarding selectivity, linearity, accuracy, precision, ruggedness, repeatability and detection limits. Careful control of capillary conditioning enabled migration time precision values of <0.2% RSD. The use of an internal standard enabled precision values of <1% RSD to be obtained for peak area ratios.  相似文献   

20.
In this fundamental study, the simultaneous separation and detection of anions and thiophilic cations in anion exchange chromatography with suppressed conductivity detection is investigated. Mercury(II) and cadmium(II) served as model analytes. Separation and detection was performed by introducing 2‐mercaptoethanesulfonate, which forms complexes with both mercury and cadmium with a strong metal–sulfur bond, into the KOH eluent. Additional to the separation on the column, these complexes were able to pass the suppressor. Subsequently, they could be detected as negative peaks. A simple model for the separation mechanism was developed based on these results. Furthermore, the effect of the eluent concentration on the retention factors of both cation complexes and standard anions was examined and quantified. It revealed that the concentration of 2‐mercaptoethanesulfonate has more influence on the cations than the KOH concentration. Also, 2.0 mM of 2‐mercaptoethanesulfonate had about the same effect on the anion separation as 60 mM KOH. Finally, selectivity and detection limits were investigated. The detection limits were 4.9 μM for mercury and 2.2 μM for cadmium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号