首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies revealed that DNA, once considered as a very stable macromolecular, is rather unstable. Familiar factors, like heavy metal, microbe, high fre-quency electromagnetic radiation and so on, could easily damage the structure of DNA in different …  相似文献   

2.
A study on the recognition of DNA sequence and conformational repair of sheared DNA by Novel Chiral Metal complex D,L-[Co(phen)2hpip]3+ (phen=1,10 phenanthroline, hpip=2-[2-hydroxyphenyl] imidazole [4,5-f][1,10] phenanthroline) is carried out with molecular simulations. The results reveal that two isomers of the complex could both recognize the normal DNA in the minor groove orientation, while recognize the sheared DNA in the major groove orientation and both isomers could convert the conformation of mismatched bases from sheared form to parallel form. Further analysis shows that the steric details of complex’s intercalation to base stack determine the results of recognition, which is induced by the steric collision among ancillary ligand phen, bases and DNA backbone, and by the steric crowding occurring in the process of structural expansion of bases and DNA backbone. Detailed analysis reveals that the conformational repair of mismatched bases relates not only to the steric interactions, but also the π-π stack among normal bases, mismatched bases and hpip ligand.  相似文献   

3.
熊振海  杨频 《化学研究与应用》2002,14(6):649-652,F002
本文通过在ESFF(Extensible Systematic Force Field)力场下对其作用中的体系势能进行分子力学计算,分析了手性金属配合物Λ-及Δ-[Ru(phen)2dppz]^n 对错配DNA d(CCGAATGAGG)2的识别机理,并在分子水平上对其做了详细解释。  相似文献   

4.
Recognition of sheared and normal DNA by a novel metal complex [Co(phen)2hpip]3+ (phen=1,10-phenanthroline, HPIP=2-(2-hydroxyphenyl)imidazole[4,5-f][1,10]phenanethroline) is studied by molecular modeling. Calculating results indicate that, this complex can specifically recognize DNA segment of sequence –MMNNMM– (M means mismatch base pairs and N means normal base pairs). Intercalating from minor groove between the middle normal duplex into the sheared DNA with the depth of 1.2 nm is of preference and enantioselectivity is observed. Comparison on the two DNA structures of optimal conformation and analysis on the interaction between DNA and the two tail ligands of the complex show that, the effect of the two neighboring mismatch duplexes on the structure of the middle normal base pairs and the steric interaction between the mismatch duplexes and the two tail ligands of the complex are the essential reason to the segment specificity. Investigation on the detailed energy terms indicate that, in effecting enantioselectivity, the electrostatic distribution of the complex is in the majority and steric interaction is at the next place. But, steric interaction is surely the only factor determining the intercalating from minor groove.  相似文献   

5.
Molecular modeling methods have been applied to the structural characterization of the interaction between chiral metal complexes [Co(phen)2dppz]3+ (where phen = 1, 10-phenanthroline, dppz = dipyrido[3,2-a: 2′, 3′-c]phenazine) and the oligonucleotide (B-DNA fragment). The natures of two kinds of the binding modes, which are currently intense controversy, have been explored. Barton proposed that there is enantio-selective DNA binding by the octahedral complexes and intercalative access by these complexes from the major groove; but Norden suggested that both enantiomers bind extremely strongly to DNA from the minor groove without any noticeable enantio-selectivity. Our results support and extend structural models based upon Norden's studies, and conflict with Barton's model.  相似文献   

6.
Molecular modeling methods have been applied to the structural characterization of the interaction between chiral metal complexes [Co(phen)2dppz]3 (where phen = 1, 10-phenanthroline, dppz = dipyrido[3,2-a: 2', 3'-c]phenazine) and the oligonucleotide (B-DNA fragment). The natures of two kinds of the binding modes, which are currently intense controversy, have been explored. Barton proposed that there is enantio-selective DMA binding by the octahedral complexes and intercalative access by these complexes from the major groove; but Norden suggested that both enantiomers bind extremely strongly to DNA from the minor groove without any noticeable enantio-selectivity. Our results support and extend structural models based upon Norden's studies, and conflict with Barton's model.  相似文献   

7.
Molecular modeling methods have been applied to the structural characterization of the interaction between chiral metal complexes [Co(phen)2dppz]3+ (where phen = 1, 10-phenanthroline, dppz = dipyrido[3,2-a: 2′, 3′ -c]phenazine) and the oligonucleotide (B-DNA fragment). The natures of two kinds of the binding modes, which are currently intense controversy, have been explored. Barton proposed that there is enantio-selective DNA binding by the octahedral complexes and intercalative access by these complexes from the major groove; but Norden suggested that both enantiomers bind extremely strongly to DNA from the minor groove without any noticeable enantio-selectivity. Our results support and extend structural models based upon Norden’s studies, and conflict with Barton’ model.  相似文献   

8.
Three ligands, 2-(3-(carboxymethyl)-1,10-phenanthroline-[5,6-d]imidazole-1-yl)acetate (CPIA), 2-(benzo[d][1,3]dioxol-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (BIP), and 2-(9H-carbazol-3-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (CIP), and their complexes, [Co(phen)2(CPIA)]3+ (1) (phen = 1,10-phenanthroline), [Co(phen)2(BIP)]3+ (2), and [Co(phen)2(CIP)]3+ (3), have been synthesized and characterized. Binding of the three complexes with calf thymus DNA (CT-DNA) has been investigated by spectroscopic methods, cyclic voltammetry, and viscosity measurements. The three complexes bind to DNA through an intercalative mode, and the size and shape of the intercalative ligands have significant effects on the binding affinity of complexes to CT-DNA.  相似文献   

9.
4-Methyl-2-(2-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline) (MHPIP) and its complexes [Co(bpy)2MHPIP]3+ (1) (bpy = 2,2′-bipyridine), [Co(dmb)2MHPIP]3+ (2) (dmb = 4,4′-dimethyl-2,2′-bipyridine), and [Co(phen)2MHPIP]3+ (3) (phen = 1,10-phenanthroline) have been synthesized and characterized by UV/VIS, IR, EA, 1H, 13C-NMR, and mass spectra. The binding of the three complexes with calf-thymus-DNA (CT-DNA) has been investigated by absorption and emission spectroscopy, DNA-melting techniques, viscosity measurements, and DNA cleavage assay. The spectroscopic data and viscosity results indicate that these complexes bind to CT-DNA via an intercalative mode. The complexes also promote photocleavage of plasmid pBR322 DNA and were screened for antimicrobial activity.  相似文献   

10.
环丁烷嘧啶二聚体(Cyclobutane Pyrimidine Dimer, CPD)是紫外线对DNA损伤导致皮肤癌的首要环节,XPC-hHR23B是最早作为对CPD的损伤识别剂的,但其识别效率很低.首次采用分子力学方法模拟了手性金属配合物D,L-[Ru(phen)2dppz]2+ (phen=1,10 phenanthroline, dppz = dipyrido[3,2-a∶2',3'-c]phenazine)对含G∶T错配的CPD双螺旋DNA的识别作用.模拟结果显示:该配合物的左手异构体优先从小沟方向识别与G∶T错配相邻的A4T5/T7G6区域,而右手异构体则优先从大沟方向识别与G∶T错配相邻的另一区域T6A7/G5T4.由于CPD的形成,该DNA螺旋高度扭曲,使得识别过程体现了手性选择性和位点特异性,左手异构体更占优势.详细的能量分析发现:在配合物插入碱基堆积过程中的空间位阻状况决定了识别作用的结果,静电相互作用也在一定程度上产生了影响.此外,我们还发现,金属配合物插入CPD相邻的区域后,能将形成CPD的两个T碱基由原来的敞口形状部分地转为近平行状,使其得到构型上的部分修复.  相似文献   

11.
对金基体上自组装ssDNA及dsDNA与钴邻菲啉配合物离子([Co(phen)3]2+/3+)相互作用进行电化学现场表面增强拉曼光谱(SERS)研究,获得相互作用位点及相互作用模式的信息.dsDNA与[Co(phen)3]2+/3+存在一定的嵌插作用,即配合物通过配体邻菲啉(phen)环以嵌插模式结合在碱基A-T及G-C富集区,同时与磷酸二酯键PO2结合,并伴随dsDNA螺旋构象由B型向A型转变;而[Co(phen)3]2+/3+则是以静电模式与ssDNA的磷酸二酯键PO2及脱氧核糖组成的骨架相互作用.  相似文献   

12.
通过分子模拟方法研究了手性金属配合物[Rh(bpy)2Chrysi]3 (bpy=2,2’- bipyridine;Chrysi=5,6-chrysenequinonediimine)对包含C:T错配碱基对的B-DNA序列的识别作用。结合类似的针对含G:A错配的和正常的B-DNA序列的识别作用研究,发现配合物[Rh(bpy)2Chrysi]3 可以对错配B-DNA序列进行序列特异性的识别.能量对比计算结果表明,该经典插入识别作用倾向于在错配碱基对附近进行,其中Δ-[Rh(bpy)2charysi]3 比其手性异构体更占优势.这同Barton教授工作组的实验结果是一致的。另外插入作用倾向于在错配序列中的正常双碱基对C3A4/G374(错配碱基对附近)中从小沟进行.与该配合物对含G:A错配的和正常的B-DNA序列的识别作用不同的是,对包含C:T错配碱基对的B-DNA序列的识别作用倾向于从小沟进行.这一点可能源于C:T碱基对结构的不同.  相似文献   

13.
Two new octahedral [Ni(phen)2(dppz-idzo)]2+ and [Co(phen)2(dppz-idzo)]3+ complexes have been synthesized and characterized by CHN analysis, electrospray ionization-MS, nuclear magnetic resonance, and UV–Vis spectra. The DNA-binding ability of these complexes was spectrophotometrically, hydrodynamically, and electrophoretically evaluated which indicated that they strongly intercalate into the DNA double helix, and that both induced severe DNA damage in the presence of peroxide. The complexes also showed strong antiproliferative effect against HepG2 and MDA-MB-231 cells. By contrast, they were found to be inactive against the MCF-7 cell line. The ligand itself was found to be inactive against the cells tested.  相似文献   

14.
Du KZ  Feng ML  Li LH  Hu B  Ma ZJ  Wang P  Li JR  Wang YL  Zou GD  Huang XY 《Inorganic chemistry》2012,51(7):3926-3928
A novel thioantimonate(III), namely, [Ni(phen)(3)](2)Sb(18)S(29) (1; phen = 1,10-phenanthroline), has been solvothermally synthesized. Its structure features a three-dimensional framework with the largest channels in thioantimonates. The chiral [Ni(phen)(3)](2+) cations and the Sb:S ratio (1:1.611) in 1 are unique among those in the reported thioantimonates. The thermal stability, optical properties, and electric conductivity as well as the theoretical band structure and density of state of 1 have also been studied.  相似文献   

15.
New carboxylate platinum(II) complexes: syn and anti isomers of Pt(phen)(OOCMe)2 molecular complex, [Pt(phen)(NCMe)2](O3SCF3)2, as well as unusual sandwich complex [Pt(phen)2]2+ · 2syn-[Pt(phen)(OOCMe)2] where [Pt(phen)2]2+ cation is inserted between two syn-Pt(phen)(OOCMe)2 molecules were synthesized and structurally characterized by X-ray diffraction analysis. As distinct from syn- and anti-Pt(phen)(OOCMe)2 and [Pt(phen)(NCMe)2](O3SCF3)2 complexes with flat phenanthroline ligand, the phen ligands in [Pt(phen)2]2+ cation have a curved configuration. Comparative DFT analysis of geometry of model structures phen, phen+, phenH+, and [Ptphen2] n+ (n = 1, 2) showed that electron removal from phen molecule had no effect on its geometry in both free state and platinum(II) complexes.  相似文献   

16.
The quenching of the luminescence of [Ru(phen)(2)dppz](2+) by structural homologue [Ru(phendione)(2)dppz](2+), when both complexes are bound to DNA, has been studied for all four combinations of Delta and Lambda enantiomers. Flow linear dichroism spectroscopy (LD) indicates similar binding geometries for all the four compounds, with the dppz ligand fully intercalated between the DNA base pairs. A difference in the LD spectrum observed for the lowest-energy MLCT transition suggests that a transition, potentially related to the final localization of the excited electron to the dppz ligand in [Ru(phen)(2)dppz](2+), is overlaid by an orthogonally polarized transition in [Ru(phendione)(2)dppz](2+). This would be consistent with a low-lying LUMO of the phendione moiety of [Ru(phendione)(2)dppz](2+) that can accept the excited electron from [Ru(phen)(2)dppz](2+), thereby quenching the emission of the latter. The lifetime of excited Delta-[Ru(phen)(2)dppz](2+) is decreased moderately, from 664 to 427 ns, when bound simultaneously with the phendione complex to DNA. The 108 ns lifetime of opposite enantiomer, Lambda-[Ru(phen)(2)dppz](2+), is only shortened to 94 ns. These results are consistent with an average rate constant for electron transfer of approximately 1.10(6) s(-1) between the phenanthroline- and phendione-ruthenium complexes. At binding ratios close to saturation of DNA, the total emission of the two enantiomers is lowered equally much, but for the Lambda enantiomer, this is not paralleled by a decrease in luminescence lifetime. A binding isotherm simulation based on a generalized McGhee-von Hippel approach shows that the Delta enantiomer binds approximately 3 times stronger to DNA both for [Ru(phendione)(2)dppz](2+) and [Ru(phen)(2)dppz](2+). This explains the similar decrease in total emission, without the parallel decrease in lifetime for the Lambda enantiomer. The simulation also does not indicate any significant binding cooperativity, in contrast to the case when Delta-[Rh(phi)(2)bipy](3+) is used as quencher. The very slow electron transfer from [Ru(phen)(2)dppz](2+) to [Ru(phendione)(2)dppz](2+), compared to the case when [Rh(phi)(2)phen](3+) is the acceptor, can be explained by a much smaller driving free-energy difference.  相似文献   

17.
To investigate the possible binding mode of E-64 (N-[N-(L-3-trans-carboxyoxirane-2-carbonyl)-L-leucyl]agmatine), a potent cysteine protease inhibitor, to papain active site, molecular dynamics simulations were applied to two complex forms: R- and S- configurational forms of E-64 C2 atom for the covalent bond formation with the papain Cys-25 SH group. The tertiary structures of the papain-E-64 complexes were built by visual interactive modelling and the energy minimization technique, and were subjected to the dynamics simulations of 10 ps. Although no significant difference was observed between the potential energies of energy-minimized R- and S-complex forms, the molecular dynamics simulations suggested that the hydrogen bonding mode of the former form is more advantageous than that of the latter one. Comparing with the hydrogen bonds observed in the papain-E-64 complex crystal, it could be concluded that the present molecular dynamics simulation reflects well the three-dimensional structure concerning the interaction of E-64 with the papain active site. The conformational characteristics of E-64 and its possible interaction mode with papain were also discussed.  相似文献   

18.
Synthesis of the tripyridyldiamine Bn-CDPy3, a chiral pentadentate ligand, and characterization of its low-spin Co(iii) complex [Co(Bn-CDPy3)Cl]Cl(2) by X-ray crystallography, (1)H NMR, (13)C NMR, IR and UV-vis spectroscopy as well as molar conductivity and mass spectrometry, is described.  相似文献   

19.
The magnetic field effect (MFE) on the photoinduced electron transfer (PET) reaction between the [Cu(phen)2]2+ complex and DNA has been studied in homogeneous buffer medium and in reverse micelles. The copper complex on photoexcitation can oxidize DNA in a deoxygenated environment. A prominent MFE is found even in a homogeneous aqueous medium for the triplet born radicals. The process of partial intercalation of [Cu(phen)2]2+ complex within DNA is responsible for such a rare observation. In reverse micelles, the MFE is not very much prominent because of the large separation distance between the component radicals of the geminate radical ion pairs generated through PET.  相似文献   

20.
张翠萍  吴艳波  杨频 《中国化学》2006,24(6):739-744
In this work, the recognition of DNA including G:T mismatched pairs by the two different structures of [Ru(phen)2hpip]^2+ was firstly studied with molecular modeling respectively. The results revealed that all of the four chiral isomers of the two structures could recognize the mismatched DNA from the minor groove orientation especially and the interaction was enantioselective and sitespecific. The two left isomers were more preferential than the right ones. Especially, the structure Ⅱ which had much lower energy after interacting with DNA was the advantaged structure. Detailed energy analysis indicated that the steric interaction in the process of the complex inserting base stack determined the recognition results and the electrostatic interaction made an effect to some extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号