首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a technique of laser flash photolysis coupled with vacuum ultraviolet laser-induced fluorescence spectroscopy, the rate coefficients of O(1D) reactions with N2, O2, N2O, and H2O at 295 ± 2 K have been determined to be , kO2=(4.06±0.24)×10-11, kN2O=(1.35±0.08)×10-10 and . The quoted uncertainties include estimated errors and are the 95% confidence level. The kN2 and kN2O values obtained are larger than the current NASA/JPL recommendations by 26% and 16%, respectively, although they are still within the error limits associated with the recommendations.  相似文献   

2.
基于密度泛函理论(DFT) M06L方法对一系列单锰取代的Keggin型POM吸附大气小分子X(X=H2O,N2,O2,NO,N2O,CO和CO2)配合物的分子几何,电子结构和成键性质进行了系统研究。由于POM的多阴离子性质,铯盐Cs4[PW11O39MnH2O]被用来考虑抗衡离子效应。DFT-M06L计算表明,当改变4个Cs抗衡阳离子的位置时,多酸阴离子的几何结构和电子结构参数几乎没有变化。当不考虑抗衡离子效应,在气相和溶液中单独优化多酸阴离子([PW11O39MnH2O]4-)时,其主要几何和电子参数没有显著变化。比较不同自旋态的能量表明[PW11O39MnX]4-(X=H2O、N2、N2O、CO和CO2)的最低能量态是高自旋五重态,[PW11O39MnO2]4-为三重态,而[PW11O39MnNO]4-则为双重态。这些大气小分子在类卟啉POM配体上的吸附能量按照以下顺序增加:N2 < N2O < CO≈CO2 < O2 < H2O < NO。POM-Mn-NO配合物具有较大的吸附能。Mulliken布居分析表明,NO配体与多酸中Mn中心的相互作用主要来自于中间自旋态的Mn中心与NO·分子之间的反铁磁性耦合相互作用。  相似文献   

3.
We present a quasi‐classical trajectory (QCT) study on product polarization for the reaction F(2P) + HCl(v = 0, j = 0) → HF + Cl(2P) on a recently computed 12 A′ ground‐state surface reported by Deskevich et al. J Chem Phys, 2006, 124, 224303. Four polarization dependent generalized differential cross‐sections (2π/σ)(dσ00/dωt), (2π/σ)(dσ20/dωt), (2π/σ)(dσ22+/dωt), and (2π/σ)(dσ21?/dωt) were calculated in the center‐of‐mass frame at four different collision energies. The obtained Pr), P(?r), and Pr, ?r), which denote respectively the distribution of angles between k and j′, the distribution of dihedral angle denoting kk′‐j′ correlation and the angular distribution of product rotational vectors in the form of polar plots, indicate that the degree of rotational alignment of the product HF molecule is strong and the degree of the rotational alignment decreases as collision energy increases. The product rotational angular momentum vector j′ is not only aligned, but also oriented along the y‐axis, and the molecular rotation of the product prefers an in‐plane reaction mechanism rather than the out‐of‐plane mechanism. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

4.
Isochoric PVTx measurements have been performed for the binary system of nitrous oxide + CH3F (R41), +CH2F2 (R32), and +CHF3 (R23) using a new experimental set-up. The experiments covered both the two-phase region and the superheated vapor region and were performed within the temperature range 214–358 K and within a pressure range from 270 to 5600 kPa. Data have been collected for not less than four compositions for each system. The vapor–liquid equilibrium data were derived correlating the experimental data by means of the Carnahan–Starling–De Santis equation of state. The studied systems show a positive deviation from the Raoult's law. The results obtained were compared with the Burnett PVTx data. The two methods showed a mutual consistency within an acceptable margin of error. No other experimental PVTx data were found in the literature for these binary systems.  相似文献   

5.
Flash photolysis of NO coupled with time resolved detection of O via resonance fluorescence has been used to obtain rate constants for the reaction O + NO + N2 → NO2 + N2 at temperatures from 217 to 500 K. The measured rate constants obey the Arrhenius equation k = (15.5 ± 2.0) × 10?33 exp(1160 ± 70)/1.987 T] cm6 molecule?2 s?1. An equally acceptable equation describing the temperature dependence of k is k = 3.80 × 10?27/T1.82 cm6 molecule?2 s?1. These results are discussed and compared with previous work.  相似文献   

6.
Rate coefficients for collisional removal of O(1D) by six atmospheric gases have been measured by monitoring the appearance of O(3P) following photolytic production of O(1D). The measured values, kM±2σ, in units of 10?11 cm?3 molecule ?1 s?1 are kO3 = 22.8±2.3, kN2 = 2.52 ± 0.25, kCO2 = 10.4 ± 1.0,kH2O 195± 2.0, kN2O = 11.7 ± 1.2, and kH2, = 11.8±1.2.  相似文献   

7.
The second-order rate constants of gas-phase Lu(2D3/2) with O2, N2O and CO2 from 348 to 573 K are reported. In all cases, the reactions are relatively fast with small barriers. The disappearance rates are independent of total pressure indicating bimolecular abstraction processes. The bimolecular rate constants (in molecule−1 cm3 s−1) are described in Arrhenius form by k(O2)=(2.3±0.4)×10−10exp(−3.1±0.7 kJmol−1/RT), k(N2O)=(2.2±0.4)×10−10exp(−7.1±0.8 kJmol−1/RT), k(CO2)=(2.0±0.6)×10−10exp(−7.6±1.3 kJmol−1/RT), where the uncertainties are ±2σ.  相似文献   

8.
Via stimulated Raman scattering the first vibrational energy level is excited above the thermal equilibrium value. Using an optical Schlieren method the vibration-translation relaxation times are measured to be 50 μs and 1 ms in liquid O2 and N2, respectively.  相似文献   

9.
The title reaction has been investigated by the FD/LMR technique at room temperature. The rate constant of the overall reaction was estimated to be 2.6×1012 cm3 mol–1 s–1. The yield of HO2 formation was found to be unity, 1.00±0.05.  相似文献   

10.
The collision-induced absorption of the symmetric vibration of CO2 has been observed in the pure gas at densities from 20.0 to 40.0 amagat and at temperatures of 273, 298, and 323 K using infrared techniques. From the integrated intensities of the bands and using the (exp ?4) model of van Kranendonk, it is possible to deduce a value for the first derivative of the quadrupole moment with respect to the vibrational coordinate. For CO2 the contribution from quadrupole distortion to the binary absorption coefficient is reported for several temperatures. The (exp ?4) model of van Kranendonk is used to calculate the binary absorption coefficients for the fundamental vibrational bands of N2 and O2 at temperatures from 70 to 340 K. The parameters λ and p/σ describing the magnitude and range of the short-range collision-induced dipole moments were determined using the known experimental absorption coefficients. The contributions from atomic distortion and quadrupole distortion to the binary absorption coefficient are calculated for N2 and O2.  相似文献   

11.
The intermolecular potentials for D2, N2, O2, F2 and CO2 are determined on the basis of the second virial coeffincients, the polarizabilities parallel and perpendicular to the molecular axes, and the electric quadrupole moment. The repulsive parts of the potentials are taken from the corresponding Kihara core-potentials. Effects of the octopolar induction are taken into consideration in a unique way. The potential depends on relative orientations of the two molecules as well as the distance r between the molecular centers. This dependence is shown in graphs. A measure of the anisotropy of the potential depth is 0.72 for CO2 0.36 for D2, and smaller than 0.27 for N2 O2 and F2. The remarkable anisotropy for CO2 and D2 is due to strong electrostatic quadrupole interactions.  相似文献   

12.
利用热重研究了两种中国西北典型低阶煤半焦的燃烧特性。探究了不同气氛(O2/CO2、O2/N2和O2/Ar)和不同氧气浓度对其燃烧特性的影响。实验结果表明,无论是反应气氛还是氧气浓度都会对低阶煤半焦的燃烧产生影响。相比于N2和Ar,CO2明显有利于燃烧反应进行:当反应气氛由O2/CO2变为O2/Ar时,两种不同低阶煤半焦的燃尽温度分别升高了63.7和68.8℃;而当反应气氛由O2/CO2变为O2/N2时,两种不同低阶煤半焦的燃尽温度分别升高了135.9和129.6℃。在研究范围内,氧气浓度的提高也能明显提高半焦的燃烧性能。与此同时,半焦燃烧特性的动力学分析表明,随着氧气浓度提高,两种半焦燃烧反应的表观活化能E和指前因子A均呈增大趋势。通过对E和A两者关系的分析结果表明,半焦富氧燃烧的活化能和指前因子存在动力学补偿效应。  相似文献   

13.
14.
Saddle point geometries and barrier heights have been calculated for the H abstraction reaction HO2(2A″)+H(2S) → H2(1Σ+g)+O2(3Σg) and the concerted H approach-O removing reaction HO2 (2A″)+H(2S) → H2O(1A1)+O(3P) by using SDCI wavefunctions with a valence double-zeta plus polarization basis set. The saddle points are found to be of Cs symmetry and the barrier heights are respectively 5.3 and 19.8 kcal by including size consistent correction. Moreoever kinetic parameters have been evaluated within the framework of the TST theory. So activation energies and the rate constants are estimated to be respectively 2.3 kcal and 0.4×109 ℓ mol−1 s−1 for the first reaction, 20.0 kcal and 5.4.10−5 ℓ mol−1 s−1 for the second. Comparison of these results with experimental determinations shows that hydrogen abstraction on HO2 is an efficient mechanism for the formation of H2 + O2, while the concerted mechanism envisaged for the formation of H2O + O is highly unlikely.  相似文献   

15.
16.
The rate coefficient for the reaction OH + HO2 =H2O + O2 has been determined from measurements of the steady-state absorption of HO2 at 210 nm, in low-frequency square-wave modulated photolysis of O3 + H2O mixtures. The value obtained was (9.9 ± 2.5) × 10?11 cm3 molecule?1 s?1 at 308 K and 1 atm pressure.  相似文献   

17.
A laser pulse-and-probe method has been used to determine the nascent vibrational populations in NO(v=0–4) and O2(v=6–11) formed in the thermal reaction: O(3P) + NO2 → O2(v) + NO(v). A frequency-tripled Nd: YAG laser is used to photolyse NO2, diluted tenfold in Ar, and laser-induced fluorescence spectroscopy in the NO A 2Σ+-X 2Π and O2 B 3Σu -X 3Σg electronic band system is used both to follow the kinetics of individual vibrational states and to determine the nascent vibrational distributions. The majority of the NO product is formed in v = 0 and the average vibrational yield is ≈ 4.6%. The O2 populations fall monotonically from v = 6 to 11 in a distribution close to what is expected on prior grounds. Based on a surprisal analysis, the average vibrational energy yield in O2 is ≈ 26%. The nature of the reaction dynamics is discussed.  相似文献   

18.
Proposed metastable cyclic conformations of N2O+ and O3, have been examined by INDO and ab initio calculations. INDO is found to exaggerate the stability of possible cyclic species. In ab initio calculations a multi-dimensional energy surface must be explored. With a [5, 3] basis SCF calculations yield a trivariate local minimum for cyclic O3. However, for N2O, N2O+ and O2+3, starting from cyclic “bonded” structures, paths involving asymmetric deformations run downhill in energy to a diatomic molecule and a separated atom. A paradox concerning the removal of an electron from an antibonding orbital in a cyclic molecule is resolved.  相似文献   

19.
The rate constant of the reaction OH (v = 0) + O3
HO2 + O2 was measured over the temperature range from 220 to 450°K at total pressures between 2 and 5 torr using ultraviolet fluorescent scattering for the detection of OH radicals. An Arrhenius expression, k1 = 1.3 × 10?12 exp(?1900/RT) cm3/sec was obtained and the rate constant for the reaction HO2 + O3
OH + 2O2 was inferred to be less than 0.1 k1 over the entire temperature interval.  相似文献   

20.
A Bayard-Alpert (BA) gauge was used to determine apparent relative sensitivites Srel,X for O2, N2O, NO, NO2, NH3, CClF3 and CH3OH from gauge calibration measurements in the range 1.3×10–1 Pap1.3·10–3Pa. Nitrogen was used as a calibration standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号