首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of group 6 transition metal half-sandwich complexes with 1,1-dichalcogenide ligands have been prepared by the reactions of Cp*MCl(4)(Cp* = eta(5)-C(5)Me(5); M = Mo, W) with the potassium salt of 2,2-dicyanoethylene-1,1-dithiolate, (KS)(2)C=C(CN)(2) (K(2)-i-mnt), or the analogous seleno compound, (KSe)(2)C=C(CN)(2) (K(2)-i-mns). The reaction of Cp*MCl(4) with (KS)(2)C=C(CN)(2) in a 1:3 molar ratio in CH(3)CN gave rise to K[Cp*M(S(2)C=C(CN)(2))(2)] (M = Mo, 1a, 74%; M = W, 2a, 46%). Under the same conditions, the reaction of Cp*MoCl(4) with 3 equiv of (KSe)(2)C=C(CN)(2) afforded K[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3a) and K[Cp*Mo(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))] (4) in respective yields of 45% and 25%. Cation exchange reactions of 1a, 2a, and 3a with Et(4)NBr resulted in isolation of (Et(4)N)[Cp*Mo(S(2)C=C(CN)(2))(2)] (1b), (Et(4)N)[Cp*W(S(2)C=C(CN)(2))(2)] (2b), and (Et(4)N)[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3b), respectively. Complex 4 crystallized with one THF and one CH(3)CN molecule as a three-dimensional network structure. Inspection of the reaction of Cp*WCl(4) with (KSe)(2)C=C(CN)(2) by ESI-MS revealed the existence of three species in CH(3)CN, [Cp*W(Se(2)C=C(CN)(2))(2)]-, [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-, and [Cp*W(Se(Se(2))C=C(CN)(2))(2)]-, of which [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-(5) was isolated as the main product. Treatment of 2a with 1/4 equiv of S(8) in refluxing THF resulted in sulfur insertion and gave rise to K[Cp*W(S(2)C=C(CN)(2))(S(S(2))C=C(CN)(2))](6), which crystallized with two THF molecules forming a three-dimensional network structure. 6 can also be prepared by refluxing 2a with 1/4 equiv of S(8) in THF. 3a readily added one Se atom upon treatment with 1 mol of Se powder in THF to give 4 in high yield, while the treatment of 3a or 4 with 2 equiv of Na(2)Se in THF led to formation of a dinuclear complex [(Cp*Mo)(2)(mu-Se)(mu-Se(Se(3))C=C(CN)(2))] (7). The structure of 7 consists of two Cp*Mo units bridged by a Se(2-) and a [Se(Se(3))C=C(CN)(2)](2-) ligand in which the triselenido group is arranged in a nearly linear way (163 degrees). The reaction of 2a with 2 equiv of CuBr in CH(3)CN yielded a trinuclear complex [Cp*WCu(2)(mu-Br)(mu(3)-S(2)C=C(CN)(2))(2)] (8), which crystallized with one CH(3)CN and generated a one-dimensional chain polymer through bonding of Cu to the N of the cyano groups.  相似文献   

2.
Protonolysis of the dimethylrhenium(III) compound Cp(PMe(3))(2)Re(CH(3))(2) (3) led to formation of the highly reactive hydridorhenium methylidene compound [Cp(PMe(3))(2)Re(CH(2))(H)][OTf] (4), which was characterized spectroscopically at low temperature. Although 4 decomposed above -30 degrees C, reactivity studies performed at low temperature indicated it was in equilibrium with the coordinatively unsaturated methylrhenium complex [Cp(PMe(3))(2)Re(CH(3))][OTf] (2). Methylidene complex 4 was found to react with PMe(3) to afford [Cp(PMe(3))(3)Re(CH(3))][OTf] (6) and with chloride anion to give Cp(PMe(3))(2)Re(Me)Cl (7). When BAr(f) anion was added to 4, the thermally stable methylrhenium methylidene complex [Cp(PMe(3))(2)Re(CH(2))(CH(3))][BAr(f)] (8) was isolated upon warming to room temperature. The mechanisms of formation of both 4 and 8 are discussed in detail, including DFT calculations. The novel carbonyl ligated complex Cp(CO)(2)Re(CH(3))OTf (12) was prepared, isolated, and found to not undergo migration reactions to form methylidene complexes.  相似文献   

3.
The unusual rearrangement of [RhCp(GaCp)(CH(3))(2)] (1c) to [RhCp(C(5)Me(4)Ga(CH(3))(3))] (2) is presented and its mechanism is discussed in detail. (13)C MAS NMR spectroscopy revealed that the title reaction proceeds cleanly not only in solution but also in solid state, which supports a unimolecular reaction pathway. On the basis of (1)H, (13)C, and ROESY NMR spectroscopy as well as isolation and structural elucidation of the hydrolysis product, the compound [RhCp(endo-eta(4)-C(5)Me(5)GaMe(2))] (3a) was identified as a crucial reaction intermediate. DFT calculations on the B3LYP level of theory support this assignment and suggest a concerted C-C bond activation mechanism that topologically takes place at the gallium center. Furthermore, two fluxional processes of the reaction intermediate 3a were studied experimentally as well as by computational methods. First, a mechanism takes place similar to a ring-slipping process that exchanges a GaMe(2) group between adjacent ring carbon atoms within the same Cp ring. This process proceeds at a rate comparable to the NMR time scale and indeed is calculated to be energetically very favorable. Second, a unimolecular exchange process of the GaMe(2) group between the two Cp rings of 3a could be experimentally proven by the introduction of phenyl substituents as a label into the Cp ligands at both sites, the rhodium as well as the gallium center. A series of experiments including deuteration studies and competition reactions was performed to substantiate the suggested mechanism being in accordance with DFT calculations on possible transition states.  相似文献   

4.
The sequential conversion of [OsBr(cod)Cp*] (9) to [OsBr(dppe)Cp*] (10), [Os([=C=CH2)(dppe)Cp*]PF6 ([11]PF6), [Os(C triple bond CH)(dppe)Cp*] (12), [{Os(dppe)Cp*}2{mu-(=C=CH-CH=C=)}][PF6]2 ([13](PF6)2) and finally [{Os(dppe)Cp*}(2)(mu-C triple bond CC triple bond C)] (14) has been used to make the third member of the triad [{M(dppe)Cp*}2(mu-C triple bond CC triple bond C)] (M = Fe, Ru, Os). The molecular structures of []PF6, 12 and 14, together with those of the related osmium complexes [Os(NCMe)(dppe)Cp*]PF6 ([15]PF6) and [Os(C triple bond CPh)(dppe)Cp*] (16), have been determined by single-crystal X-ray diffraction studies. Comparison of the redox properties of 14 with those of its iron and ruthenium congeners shows that the first oxidation potential E1 varies as: Fe approximately Os < Ru. Whereas the Fe complex has been shown to undergo three sequential 1-electron oxidation processes within conventional electrochemical solvent windows, the Ru and Os compounds undergo no fewer than four sequential oxidation events giving rise to a five-membered series of redox related complexes [{M(dppe)Cp*}2(mu-C4)]n+ (n = 0, 1, 2, 3 and 4), the osmium derivatives being obtained at considerably lower potentials than the ruthenium analogues. These results are complimented by DFT and DT DFT calculations.  相似文献   

5.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods.  相似文献   

6.
The unusual formation of planar trimethylenemethane (TMM) dianion complexes of lanthanide metallocenes, [(C5Me5)2Ln]2[mu-eta3:eta3-C(CH2)3] (Ln = Sm, 1; La, 2; Pr, 3; Nd, 4; Y, 5) has been examined by synthesizing examples with metals from La to Y to examine the effects of radial size on structure and to provide closed shell examples for direct comparison with density functional theory (DFT) calculations. Synthetic routes to 1-4 have been expanded from the [(C5Me5)2Ln][(mu-Ph)2BPh2]/neopentyl lithium reaction involving beta-methyl elimination to a [(C5Me5)2Ln][(mu-Ph)2BPh2]/isobutyl lithium route. The synthetic pathways are sensitive to metal radius. To obtain 5, the methylallyl complex, (C5Me5)2Y[CH2C(Me)CH2], 6, was synthesized and treated with [(C5Me5)2YH]x. In the Lu case, the neopentyl complex [(C5Me5)2LuCH2C(CH3)3]x, 7, was isolated instead of the TMM product. X-ray crystallography showed that the metrical parameters of the planar TMM dianions in each complex are similar. The structural data have been compared with DFT calculations on the closed-shell lanthanum and lutetium complexes that suggest only limited covalent interactions with the lanthanide ion. Benzophenone (2 equiv) reacts with 1 to expand the original four-carbon TMM skeleton to a dianionic bis(alkoxide) ligand containing a symmetrically substituted C=CH2 moiety in [(C5Me5)2Sm]2[mu-(OCPh2CH2)2C=CH2], 8. In this reaction, the TMM complex reacts as a bifunctional bisallylic reagent that generates an organic framework containing a central vinyl group.  相似文献   

7.
The synthesis of half-sandwich transition-metal complexes containing the Cab(N) and Cab(N,S) chelate ligands (HCab(N) = HC2B10H10CH2C5H4N (1), LiCab(N,S) = LiSC2B10H10CH2C5H4N (4)) is described. Compounds 1 and 4 were treated with chloride-bridged dimers [{Ir(Cp*)Cl2}2] (Cp* = eta5-C5Me5), [{Ru(p-cymene)Cl2}2] and [{Rh(Cp*)Cl2}2] to give half-sandwich complexes [Ir(Cp*)Cl(Cab(N))] (2), [Ru(p-cymene)Cl(Cab(N))] (3), and [Rh(Cp*)Cl(Cab(N,S))] (5), respectively. Addition reaction of LiCab(S) (Cab(S) = SC2(H)B10H10) to the rhodium complex 5 yields [Rh(Cp*)(Cab(S))(Cab(N,S))] (6). All the complexes were characterized by IR and NMR spectroscopy, and by elemental analysis. In addition, X-ray structure analyses were performed on complexes 2, 3, 5, and 6, in which the potential C,N- and N,S-chelate ligands were found to coordinate in a bidentate mode. The carborane complex 2 shows catalytic activities up to 3.7x10(5) g PE mol(-1) Ir h(-1) for the polymerization of ethylene in the presence of methylaluminoxane (MAO) as cocatalyst. The polymer obtained from this homogeneous catalytic reaction has a spherical morphology. Catalytic activities and the molecular weight of polyethylene have been investigated for various reaction conditions.  相似文献   

8.
Treatment of [Ce(Cp*)(2)I] or [U(Cp*)(2)I(py)] with 1 mol equivalent of bipy (Cp*=C(5)Me(5); bipy=2,2'-bipyridine) in THF gave the adducts [M(Cp*)(2)I(bipy)] (M=Ce (1 a), M=U (1 b)), which were transformed into [M(Cp*)(2)(bipy)] (M=Ce (2 a), M=U (2 b)) by Na(Hg) reduction. The crystal structures of 1 a and 1 b show, by comparing the U-N and Ce-N distances and the variations in the C-C and C-N bond lengths within the bidentate ligand, that the extent of donation of electron density into the LUMO of bipy is more important in the actinide than in the lanthanide compound. Reaction of [Ce(Cp*)(2)I] or [U(Cp*)(2)I(py)] with 1 mol equivalent of terpy (terpy=2,2':6',2'-terpyridine) in THF afforded the adducts [M(Cp*)(2)(terpy)]I (M=Ce (3 a), M=U (3 b)), which were reduced to the neutral complexes [M(Cp*)(2)(terpy)] (M=Ce (4 a), M=U (4 b)) by sodium amalgam. The complexes [M(Cp*)(2)(terpy)][M(Cp*)(2)I(2)] (M=Ce (5 a), M=U (5 b)) were prepared from a 2:1 mixture of [M(Cp*)(2)I] and terpy. The rapid and reversible electron-transfer reactions between 3 and 4 in solution were revealed by (1)H NMR spectroscopy. The spectrum of 5 b is identical to that of the 1:1 mixture of [U(Cp*)(2)I(py)] and 3 b, or [U(Cp*)(2)I(2)] and 4 b. The magnetic data for 3 and 4 are consistent with trivalent cerium and uranium species, with the formulation [M(III)(Cp*)(2)(terpy(*-))] for 4 a and 4 b, in which spins on the individual units are uncoupled at 300 K and antiferromagnetically coupled at low temperature. Comparison of the crystal structures of 3 b, 4 b, and 5 b with those of 3 a and the previously reported ytterbium complex [Yb(Cp*)(2)(terpy)] shows that the U-N distances are much shorter, by 0.2 A, than those expected from a purely ionic bonding model. This difference should reflect the presence of stronger electron transfer between the metal and the terpy ligand in the actinide compounds. This feature is also supported by the small but systematic structural variations within the terdentate ligands, which strongly suggest that the LUMO of terpy is more filled in the actinide than in the lanthanide complexes and that the canonical forms [U(IV)(Cp*)(2)(terpy(*-))]I and [U(IV)(Cp*)(2)(terpy(2-))] contribute significantly to the true structures of 3 b and 4 b, respectively. This assumption was confirmed by the reactions of complexes 3 and 4 with the H(.) and H(+) donor reagents Ph(3)SnH and NEt(3)HBPh(4), which led to clear differentiation of the cerium and uranium complexes. No reaction was observed between 3 a and Ph(3)SnH, while the uranium counterpart 3 b was transformed in pyridine into the uranium(IV) compound [U(Cp*)(2){NC(5)H(4)(py)(2)}]I (6), where NC(5)H(4)(py)(2) is the 2,6-dipyridyl(hydro-4-pyridyl) ligand. Complex 6 was further hydrogenated to [U(Cp*)(2){NC(5)H(8)(py)(2)}]I (7) by an excess of Ph(3)SnH in refluxing pyridine. Treatment of 4 a with NEt(3)HBPh(4) led to oxidation of the terpy(*-) ligand and formation of [Ce(Cp*)(2)(terpy)]BPh(4), whereas similar reaction with 4 b afforded [U(Cp*)(2){NC(5)H(4)(py)(2)}]BPh(4) (6'). The crystal structures of 6, 6' and 7 were determined.  相似文献   

9.
The reaction of the dicarbaphosphazene, [NC(NMe(2))](2)[NPCl(2)] (2), with the sodium salt of 4-hydroxy-4'-vinylbiphenyl afforded the vinyl group containing monomer [NC(NMe(2))](2)[NP(Cl)(O-C(6)H(4)-p-C(6)H(4)-p-CH=CH(2))] (3). Replacement of the lone chlorine atom of 3 by oxygen nucleophiles gave [NC(NMe(2))](2)[NP(OR)(O-C(6)H(4)-p-C(6)H(4)-p-CH=CH(2))] [R = CH(2)CF(3) (4); C(6)H(5) (5); C(6)H(4)-m-CH(3) (6); C(6)H(4)-p-Br(7)]. The X-ray crystal structures of 3-7 reveal that all the cyclodicarbaphosphazenes have a planar N(3)PC(2) ring; the ring carbons are completely planar, while the geometry around phosphorus is pseudotetrahedral. The presence of weak intermolecular hydrogen bonding [C-H---X(Cl or Br), C-H---N, or C-H---pi] interactions in 3-7 leads to the formation of polymeric architectures in the solid-state. The monomers 4-7 can be polymerized by a free-radical initiator to afford the corresponding air-stable homopolymers 8-11. These have moderate molecular weights with polydispersity indices ranging from 1.33 to 1.58. All of these polymers have high glass transition temperatures and have excellent thermal stability.  相似文献   

10.
A series of hetero- and homo-dinuclear complexes with direct metal-metal interaction are synthesized through reaction of Cp*Rh[E(2)C(2)(B(10)H(10))] (E = S (1a), Se (1b)) and CpRh[S(2)C(2)(B(10)H(10))] (2a) with low valent half-sandwich CpCo(CO)(2) or CpRh(C(2)H(4))(2) under moderate conditions. The resulting products, namely (Cp*Rh)(CpCo)[E(2)C(2)(B(10)H(10))] (E = S(3a); Se(3b)), (Cp*Rh)(CpRh)[E(2)C(2)(B(10)H(10))] (E = S(4a); Se(4b)) and (CpRh)(CpRh)[S(2)C(2)(B(10)H(10))] (5a), are fully characterized by IR and NMR spectroscopy and elemental analysis. The molecular structures of 3a, 3b, 4a, 4b and 5a are established by X-ray crystallography analyses, and the Rh-Co (2.4778(11) (3a) and 2.5092(16) (3b) A) and Rh-Rh bonds (2.5721(8) (4a), 2.6112(10) (4b), 2.5627(10) (5a) A) fall in the range of single bonds.  相似文献   

11.
From the reaction mixture of 3,6-di-tert-butylcatechol, H2[3,6L(cat)], [CrCl3(thf)3], and NEt3 in CH3CN in the presence of air, the neutral complex [CrIII(3,6L*(sq))3] (S = 0) (1) was isolated. Reduction of 1 with [Co(Cp)2] in CH2Cl2 yielded microcrystals of [Co(Cp)2][CrIII(3,6L*(sq))2(3,6L(cat))] (S = 1/2) (2) where (3,6L*(sq)(1-) is the pi-radical monoanionic o-semiquinonate of the catecholate dianion (3,6Lcat)(2-). Electrochemistry demonstrated that both species are members of the electron-transfer series [Cr(3,6LO,O)]z (z = 0, 1-, 2-, 3-). The corresponding tris(benzo-1,2-dithiolato)chromium complex [N(n-Bu)4][CrIII(3,5L*S,S)2(3,5LS,S)] (S = 1/2) (3) has also been isolated; (3,5LS,S)(2-) represents the closed-shell dianion 3,5-di-tert-butylbenzene-1,2-dithiolate(2-), and (3,5L*S,S)(1-) is its monoanionic pi radical. Complex 3 is a member of the electron-transfer series [Cr(3,5L(S,S))3]z (z = 0, 1-, 2-, 3-). It is shown by Cr K-edge and S K-edge X-ray absorption, UV-vis, and EPR spectroscopies, as well as X-ray crystallography, of 1 and 3 that the oxidation state of the central Cr ion in each member of both electron-transfer series remains the same (+III) and that all redox processes are ligand-based. These experimental results have been corroborated by broken symmetry density functional theoretical calculations by using the B3LYP functional.  相似文献   

12.
Treatment of ThCl(4)(DME)(2) or UCl(4) with 1 equiv of dilithiumbis(iminophosphorano) methandiide, [Li(2)C(Ph(2)P═NSiMe(3))(2)] (1), afforded the chloro actinide carbene complexes [Cl(2)M(C(Ph(2)P═NSiMe(3))(2))] (2 (M = Th) and 3 (M = U)) in situ. Stable PCP metal-carbene complexes [Cp(2)Th(C(Ph(2)P═NSiMe(3))(2))] (4), [Cp(2)U(C(Ph(2)P═NSiMe(3))(2))] (5), [TpTh(C(Ph(2)P═NSiMe(3))(2))Cl] (6), and [TpU(C(Ph(2)P═NSiMe(3))(2))Cl] (7) were generated from 2 or 3 by further reaction with 2 equiv of thallium(I) cyclopentadienide (CpTl) in THF to yield 4 or 5 or with 1 equiv of potassium hydrotris(pyrazol-1-yl) borate (TpK) also in THF to give 6 or 7, respectively. The derivative complexes were isolated, and their crystal structures were determined by X-ray diffraction. All of these U (or Th)-carbene complexes (4-7) possess a very short M (Th or U)═carbene bond with evidence for multiple bond character. Gaussian 03 DFT calculations indicate that the M═C double bond is constructed by interaction of the 5f and 6d orbitals of the actinide metal with carbene 2p orbitals of both π and σ character. Complex 3 reacted with acetonitrile or benzonitrile to cyclo-add C≡N to the U═carbon double bond, thereby forming a new C-C bond in a new chelated quadridentate ligand in the bridged dimetallic complexes (9 and 10). A single carbon-U bond is retained. The newly coordinated uranium complex dimerizes with one equivalent of unconverted 3 using two chlorides and the newly formed imine derived from the nitrile as three connecting bridges. In addition, a new crystal structure of [CpUCl(3)(THF)(2)] (8) was determined by X-ray diffraction.  相似文献   

13.
Multistage mass spectrometry experiments combined with density functional theory (DFT) calculations were used to examine the gas-phase synthesis and ion-molecule reactions of the organomagnesates [CH(3)MgL(2)](-) (L = Cl and O(2)CCH(3)). Neutral species containing an acidic proton (HX) react with the [CH(3)MgL(2)](-) ions via addition with concomitant elimination of methane to form [XMgL(2)](-) ions. Kinetic measurements combined with DFT calculations revealed reduced reactivity of [CH(3)Mg(O(2)CCH(3))(2)](-) toward water, caused by the bidentate binding mode of acetate, which induces overcrowding of the Mg coordination sphere. The [CH(3)MgL(2)](-) ions reacted with (i) aldehydes with enolizable protons via enolization rather than the Grignard reaction and (ii) CH(3)CO(2)H to complete a catalytic cycle for the decarboxylation of acetic acid. Other electrophilic reagents such as pivaldehyde, benzaldehyde, methyl iodide, and trimethylborate are unreactive. DFT calculations on the competition between enolization and the Grignard reaction for [CH(3)MgCl(2)](-) ions reacting with acetaldehyde suggest that while the latter has a smaller barrier, it is entropically disfavored.  相似文献   

14.
本文研究了Cp_2ZrH_2与CS_2、RNCS(R=n-Bu,c-C_6H_11,C_6H_5,2-C_(10)H_7)和Cp_2HfH_2与c-C_6H_(11)NCS的反应,探讨了在这类新型脱硫反应中锆氢与铪氢配合物化学反应性能上的差异.从以上反应中分别得到两个硫桥同核双金属配合物(Cp_2MS)_2(1,M=Zr;2,M=Hf)和有机铪配合物Cp_2Hf[SC(H)NR]_2(3,R=c-C_6H_(11)).产物结构由元素分析、IR、~1H和~(13)C NMR及MS谱分析鉴定,产物1的晶体结构由X光四圆衍射方法测定,有机产物X=CH_2和CH_3X(H)(X=S,NR)由GC-MS谱分析测定.  相似文献   

15.
This work deals with the type and incidence of nonclassical Si--H and H--H interactions in a family of silylhydride complexes [Fe(Cp)(OC)(SiMe(n)Cl(3-n))H(X)] (X=SiMe(n)Cl(3-n), H, Me, n=0-3) and [Fe(Cp)(Me(3)P)(SiMe(n)Cl(3-n))(2)H] (n=0-3). DFT calculations complemented by atom-in-molecule analysis and calculations of NMR hydrogen-silicon coupling constants revealed a surprising diversity of nonclassical Si--H and H--H interligand interactions. The compounds [Fe(Cp)(L)(SiMe(n)Cl(3-n))(2)H] (L=CO, PMe(3); n=0-3) exhibit an unusual distortion from the ideal piano-stool geometry in that the silyl ligands are strongly shifted toward the hydride and there is a strong trend towards flattening of the {FeSi(2)H} fragment. Such a distortion leads to short Si--H contacts (range 2.030-2.075 A) and large Mayer bond orders. A novel feature of these extended Si--H interactions is that they are rather insensitive towards the substitution at the silicon atom and the orientation of the silyl ligand relatively the Fe--H bond. NMR spectroscopy and bonding features of the related complexes [Fe(Cp)(OC)(SiMe(n)Cl(3-n))H(Me)] (n=0-3) allow for their rationalization as usual eta(2)-Si--H silane sigma-complexes. The series of "dihydride" complexes [Fe(Cp)(OC)(SiMe(n)Cl(3-n))H(2)] (n=0-3) is different from the previous two families in that the type of interligand interactions strongly depends on the substitution on silicon. They can be classified either as usual dihydrogen complexes, for example, [Fe(Cp)(OC)(SiMe(2)Cl)(eta(2)-H(2))], or as compounds with nonclassical H--Si interactions, for example, [Fe(Cp)(OC)(H)(2)(SiMe(3))] (16). These nonclassical interligand interactions are characterized by increased negative J(H,Si) (e.g. -27.5 Hz) and increased J(H,H) (e.g. 67.7 Hz).  相似文献   

16.
[Rh(Cp)Cl(mu-Cl)](2) (Cp = pentamethylcyclopentadienyl) reacts (i) with [Au(NH=CMe(2))(PPh(3))]ClO(4) (1:2) to give [Rh(Cp)(mu-Cl)(NH=CMe(2))](2)(ClO(4))(2) (1), which in turn reacts with PPh(3) (1:2) to give [Rh(Cp)Cl(NH=CMe(2))(PPh(3))]ClO(4) (2), and (ii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:2 or 1:4) to give [Rh(Cp)Cl(NH=CMe(2))(2)]ClO(4) (3) or [Rh(Cp)(NH=CMe(2))(3)](ClO(4))(2).H(2)O (4.H(2)O), respectively. Complex 3 reacts (i) with XyNC (1:1, Xy = 2,6-dimethylphenyl) to give [Rh(Cp)Cl(NH=CMe(2))(CNXy)]ClO(4) (5), (ii) with Tl(acac) (1:1, acacH = acetylacetone) or with [Au(acac)(PPh(3))] (1:1) to give [Rh(Cp)(acac)(NH=CMe(2))]ClO(4) (6), (iii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:1) to give 4, and (iv) with (PPN)Cl (1:1, PPN = Ph(3)P=N=PPh(3)) to give [Rh(Cp)Cl(imam)]Cl (7.Cl), which contains the imam ligand (N,N-NH=C(Me)CH(2)C(Me)(2)NH(2) = 4-imino-2-methylpentan-2-amino) that results from the intramolecular aldol-type condensation of the two acetimino ligands. The homologous perchlorate salt (7.ClO(4)) can be prepared from 7.Cl and AgClO(4) (1:1), by treating 3 with a catalytic amount of Ph(2)C=NH, in an atmosphere of CO, or by reacting 4with (PPN)Cl (1:1). The reactions of 7.ClO(4) with AgClO(4) and PTo(3) (1:1:1, To = C(6)H(4)Me-4) or XyNC (1:1:1) give [Rh(Cp)(imam)(PTo(3))](ClO(4))(2).H(2)O (8) or [Rh(Cp)(imam)(CNXy)](ClO(4))(2) (9), respectively. The crystal structures of 3 and 7.Cl have been determined.  相似文献   

17.
Reaction of RhCp*(L)(CH(3))(2)(L = pyridine, dmso) with equimolar amounts of GaCp* at 60 degrees C quantitatively leads to the zwitterionic species [Cp*Rh(CpMe(4)GaMe(3))]. [Cp*Rh(CH(3))(2)(GaCp*)] could be isolated and identified as an intermediate in this reaction.  相似文献   

18.
A series of new complexes, the blue compounds [PdCl(TeCH(2)CH(2)NMe(2))(PR(3))] (PR(3) = PEt(3), PPr(n)(3), PBu(n)(3), PMe(2)Ph, PMePh(2), PPh(3), PTol(3)) and the red [PtCl(TeCH(2)CH(2)NMe(2))(PR(3))] (PR(3) = PMe(2)Ph, PMePh(2)), were synthesized and studied spectroscopically ((1)H and (31)P NMR, UV/vis) and by cyclic voltammetry. The structures of [PdCl(TeCH(2)CH(2)NMe(2))(PPr(n)(3))] (2b) [PdCl(TeCH(2)CH(2)NMe(2))(PMePh(2))] (2e), [PtCl(TeCH(2)CH(2)NMe(2))(PMePh(2))] (2i), and the related [PtCl(SeCH(2)CH(2)NMe(2))(PEt(3))] (3) were determined crystallographically, revealing a typical pattern of trans-positioned neutral N and P donor atoms in an approximately square planar setting. The molecules 2b, 2e, and 2i were calculated by TD-DFT methodology to understand the origin of the weak (epsilon approximately 200 M(-1) cm(-1)) long-wavelength bands at about 600 nm for Pd/Te complexes such as 2b or 2e, at ca. 460 nm for Pt/Te systems such as 2i, and at about 405 nm for Pt/Se analogues such as 3. These transitions are identified as charge transfer transitions from the selenolato or tellurolato centers to unoccupied orbitals involving mainly the phosphine coligands for the Pt(II) compounds and more delocalized MOs for the Pd(II) analogues. Calculations and electrochemical data were used to rationalize the effects of metal and chalcogen variation.  相似文献   

19.
The imidotungsten dimethyl compound [W(N2Npy)(NPh)Me2] 2 reacts with BArF3 to form the cationic complex [W(N2Npy)(NPh)Me]+ 3+ [anion = [MeBArF3]-; ArF = C6F5; N2Npy = MeC(2C5H4N)(CH2NSiMe3)2] which undergoes methyl group exchange with added 2, [Cp2ZrMe2] or ZnMe2; treatment of cation 3+ with CO2 or isocyanates leads to cycloaddition reactions at the W=NPh bond and not insertion into the W-Me bond, despite the latter product being the most thermodynamically favourable according to DFT calculations.  相似文献   

20.
The ionic metallocene complexes [Cp*(2)M][BPh(4)] (Cp* = C(5)Me(5)) of the trivalent 3d metals Sc, Ti, and V were synthesized and structurally characterized. For M = Sc, the anion interacts weakly with the metal center through one of the phenyl groups, but for M = Ti and V, the cations are naked. They each contain one strongly distorted Cp* ligand, with one (V) or two (Ti) agostic C-H...M interactions involving the Cp*Me groups. For Sc and Ti, these Lewis acidic species react with fluorobenzene and 1,2-difluorobenzene to yield [Cp*(2)M(kappaF-FC(6)H(5))(n)][BPh(4)] (M = Sc, n = 2; M = Ti, n = 1) and [Cp*(2)M(kappa(2)F-1,2-F(2)C(6)H(4))][BPh(4)], the first examples of kappaF-fluorobenzene and kappa(2)F-1,2-difluorobenzene adducts of transition metals. With the perfluorinated anion [B(C(6)F(5))(4)](-), both Sc and Ti form [Cp*(2)M(kappa(2)F-C(6)F(5))B(C(6)F(5))(3)] contact ion pairs. The nature of the metal-fluoroarene interaction was studied by density functional theory (DFT) calculations and by comparison with the corresponding tetrahydrofuran (THF) adducts and was found to be predominantly electrostatic for all metals studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号