首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the global exponential stability analysis of neutral systems with Markovian jumping parameters and interval time-varying delays. The time-varying delay is assumed to belong to an interval, which means that the lower and upper bounds of interval time-varying delays are available. A new global exponential stability condition is derived in terms of linear matrix inequality (LMI) by constructing new Lyapunov-Krasovskii functionals via generalized eigenvalue problems (GEVPs). The stability criteria are formulated in the form of LMIs, which can be easily checked in practice by Matlab LMI control toolbox. Two numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed methods.  相似文献   

2.
New delay-independent and delay-dependent stability criteria for linear systems with multiple uncertain delays are established by using both the time-domain and the frequency-domain methods. The results are derived based on the established new preliminary lemmas and by using new-type stability theorems for general retarded dynamical systems and new analysis techniques in the time-domain and the frequency-domain. All the established stability criteria depend only on the eigenvalues related to the coefficient matrices of the systems and do not involve any free tuning parameters. In addition, some remarks are given to explain in detail the obtained results and to point out the limitations of the existing results in the literature.  相似文献   

3.
In this paper, problem of robust stability of uncertain neural networks with interval time-varying delays has been investigated. The delay factor is assumed to be time-varying and belongs to a given interval, which means that the lower and upper bounds of the interval time-varying delays are available. Based on the Lyapunov–Krasovskii functional approach, a new delay-dependent stability criteria is presented in terms of linear matrix inequalities (LMIs). Two numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

4.
This paper proposes an approach for the robust stability of uncertain systems with interval time-varying delay. The key features of the approach include the introduction of uncorrelated augmented matrix items into the Lyapunov functional and the use of a tighter bounding technology. Unlike existing methodologies, the proposed approach involves neither free weighting matrices nor any model transformation. It can, however, lead to much less conservative stability criteria than the existing ones for the systems under consideration. Numerical examples show that the proposed criteria improve the existing results significantly with much less computational effort.  相似文献   

5.
In this paper, the problem of exponential stabilization for a class of linear systems with time-varying delay is studied. The time delay is a continuous function belonging to a given interval, which means that the lower and upper bounds for the time-varying delay are available, but the delay function is not necessary to be differentiable. Based on the construction of improved Lyapunov-Krasovskii functionals combined with Leibniz-Newton’s formula, new delay-dependent sufficient conditions for the exponential stabilization of the systems are first established in terms of LMIs. Numerical examples are given to demonstrate that the derived conditions are much less conservative than those given in the literature.  相似文献   

6.
Email: chlien{at}mail.nkmu.edu.tw Received on August 10, 2006; Accepted on September 6, 2006 In this paper, delay-dependent guaranteed cost observer-basedcontrol for neutral systems with time-varying delays is considered.Control and observer gains will be given from the linear matrixinequality feasible solutions. Optimal guaranteed cost observer-basedcontrol which will minimize the guaranteed cost of the systemis provided.  相似文献   

7.
This paper is a further note on stability criteria for uncertain neutral systems with mixed delays. We firstly employed a new method to estimate the upper bound of the derivative of functional, and novel stability criteria are presented for nominal neutral system, which will obtain less conservatism. Then, several sufficient stability conditions are proposed for neutral systems with polytopic uncertainty and linear fractional norm-bound uncertainty. Lastly, three numerical examples are given to demonstrate the effectiveness and merit of the proposed results. In Appendix, the stability criteria in Lu et al. [21] are rectified.  相似文献   

8.
In this paper, the problem of exponential stability analysis for neural networks is investigated. It is assumed that the considered neural networks have norm-bounded parametric uncertainties and interval time-varying delays. By constructing a new Lyapunov functional, new delay-dependent exponential stability criteria with an exponential convergence rate are established in terms of LMIs (linear matrix inequalities) which can be easily solved by various convex optimization algorithms. Two numerical examples are included to show the effectiveness of proposed criteria.  相似文献   

9.
This paper is concerned with the problem of exponential stability for uncertain neutral switched systems with interval time-varying mixed delays and nonlinear perturbations. By using the average dwell time approach and the piecewise Lyapunov functional technique, some sufficient conditions are first proposed in terms of a set of linear matrix inequalities (LMIs), to guarantee the robustly exponential stability for the uncertain neutral switched systems, where the decay estimate is explicitly given to quantify the convergence rate. Three numerical examples are finally illustrated to show the effectiveness of the proposed method.  相似文献   

10.
This paper deals with output feedback guaranteed cost control problem for a general class of uncertain linear discrete delay systems, where the state and the observation output are subjected to interval time-varying delay. The proposed output feedback controller uses the observation measurement to exponentially stabilize the closed-loop system and guarantee an adequate level of system performance. By constructing a set of augmented Lyapunov–Krasovskii functionals, a delay-dependent condition for the robust output feedback guaranteed cost control is established in terms of linear matrix inequalities (LMIs). Three numerical examples are provided to demonstrate the efficiency of the proposed method.  相似文献   

11.
The issue of robustly exponential stability for uncertain neutral-type systems is considered in this paper. The uncertainties are nonlinear and the delays are time-varying. In terms of a linear matrix inequality (LMI), the new sufficient stability condition with delay dependence is presented. The model transformation and bounding techniques for cross terms are avoided based on an integral inequality. Two illustrative examples are proposed to show the effectiveness of our method.  相似文献   

12.
This article considers non-fragile guaranteed cost control problem for a class of uncertain neutral system with time-varying delays in both state and control input. Delay-dependent criteria are proposed to guarantee the robust stabilization of systems. Linear matrix inequality (LMI) optimization approach is used to solve the non-fragile guaranteed cost control problem. Non-fragile guaranteed cost control for unperturbed neutral system is considered in the first step. Robust non-fragile guaranteed cost control for uncertain neutral system is designed directly from the unperturbed condition. An efficient approach is proposed to design the non-fragile guaranteed cost control for uncertain neutral systems. LMI toolbox of Matlab is used to implement the proposed results. Finally, a numerical example is illustrated to show the usefulness of the proposed results.  相似文献   

13.
Relationships between system states contained in the neutral equation are used to address the delay-dependent stability of a neutral system with time-varying state delay. Using linear matrix inequalities, we present a new asymptotic stability criterion, and a new robust stability criterion, for neutral systems with mixed delays. Since the criteria take into account the sizes of the neutral delay, discrete delay and the derivative of discrete delay, they are less conservative than those produced by previous approaches. Numerical examples are presented to demonstrate that these criteria are indeed more effective.  相似文献   

14.
This paper is concerned with the delay-dependent stability and robust stability criteria for linear systems with time-varying delay and norm-bounded uncertainties. Through constructing a general form of Lyapunov–Krasovskii functional, and using integral inequalities, some slack matrices and newly established convex combination condition in the calculation, the delay-dependent stability criteria are derived in terms of linear matrix inequalities. Numerical examples are given to illustrate the improvement on the conservatism of the delay bound over some reported results in the literature.  相似文献   

15.
The problem of stochastic robust stability of a class of stochastic Hopfield neural networks with time-varying delays and parameter uncertainties is investigated in this paper. The parameter uncertainties are time-varying and norm-bounded. The time-delay factors are unknown and time-varying with known bounds. Based on Lyapunov–Krasovskii functional and stochastic analysis approaches, some new stability criteria are presented in terms of linear matrix inequalities (LMIs) to guarantee the delayed neural network to be robustly stochastically asymptotically stable in the mean square for all admissible uncertainties. Numerical examples are given to illustrate the effectiveness and less conservativeness of the developed techniques.  相似文献   

16.
This paper considers the synchronization problem for coupled neural networks with interval time-varying delays and leakage delay. By construction of a suitable Lyapunov-Krasovskii’s functional and utilization of Finsler’s lemma, novel delay-dependent criteria for the synchronization of the networks are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.  相似文献   

17.
Based on the eigenvalues of characteristic equations, some new criteria are derived to ensure the asymptotic stability for a class of neutral differential equations with multiple time delays. Conditions obtained here are independent of the time delays and easy to be checked. When suitable fj(·) (j = 1, 2, … , m) are chosen, the model studied in this paper will reduce to a simple form. Moreover, our results can resolve some nonlinear neutral problems which are seldom discussed. Finally, an example with numerical simulation is given to show the effectiveness of our method.  相似文献   

18.
This paper deals with the problem of robust stability of uncertain neutral systems with neutral, discrete and distributed delays. A method based on linear matrix inequalities is presented that makes it easy to calculate both the upper stability bounds and the free weighting matrices. Since the criteria takes three different delays of neutral-, discrete- and distributed-delays into account, it is less conservative than previous methods. Numerical examples illustrate the improvement this approach provides over previous methods.  相似文献   

19.
The robust non-fragile guaranteed cost control problem is studied in this paper for a class of uncertain linear large-scale systems with time-varying delays in subsystem interconnections and given quadratic cost functions. The uncertainty in the system is assumed to be norm-bounded and time-varying. Also, the state-feedback gains for subsystems of the large-scale system are assumed to have norm-bounded controller gain variations. The problem is to design state feedback control laws such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainties. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. A parameterized characterization of the robust non-fragile guaranteed cost controllers is given in terms of the feasible solutions to a certain LMI. Finally, in order to show the application of the proposed method, a numerical example is included.  相似文献   

20.
The exponential stability (with convergence rate α) of uncertain linear systems with multiple time delays is studied in this paper. Using the characteristic function of linear time-delay system, stability criteria are derived to guarantee α-stability. Sufficient conditions are also obtained for exponential stability of uncertain parametric systems with multiple time delays. For two-dimensional time-invariant system with multiple time delays, the proposed stability criteria are shown to be less conservative than those in the literature. Numerical examples are given to illustrate the validity of our new stability criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号