首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Ultrafast (UF) 2D NMR is a very promising methodology enabling the acquisition of 2D spectra in a single scan. In the last few years, the analytical performance of UF 2D NMR has been highly increased, consequently maximizing its range of applications. However, its implementation and use by non‐specialists are far from being straightforward, because of the specific acquisition and processing procedures and parameters characterizing UF NMR. To make this methodology implementable and applicable by non‐specialists, we developed a simple routine capable of translating conventional parameters (spectral widths and transmitter frequencies) into specific UF parameters (gradient and chirp pulse parameters). This macro was subsequently implemented in a Web page, which is available for external users. Although the algorithm was designed for two widely used 2D experiments, COSY and HSQC, it can easily be extended to any other pulse sequence. The robustness of this routine was verified successfully on a variety of small molecules. We believe that this tool will eliminate much of the technical difficulties related to UF 2D NMR and will make the technique accessible to a wider audience of organic and analytical chemists. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
An important development in the field of NMR spectroscopy has been the advent of hyperpolarization approaches, capable of yielding nuclear spin states whose value exceeds by orders‐of‐magnitude what even the highest‐field spectrometers can afford under Boltzmann equilibrium. Included among these methods is an ex situ dynamic nuclear polarization (DNP) approach, which yields liquid‐phase samples possessing spin polarizations of up to 50 %. Although capable of providing an NMR sensitivity equivalent to the averaging of about 1 000 000 scans, this methodology is constrained to extract its “superspectrum” within a single—or at most a few—transients. This makes it a poor starting point for conventional 2D NMR acquisition experiments, which require a large number of scans that are identical to one another except for the increment of a certain t1 delay. It has been recently suggested that by merging this ex situ DNP approach with spatially encoded “ultrafast” methods, a suitable starting point could arise for the acquisition of 2D spectra on hyperpolarized liquids. Herein, we describe the experimental principles, potential features, and current limitations of such integration between the two methodologies. For a variety of small molecules, these new hyperpolarized ultrafast experiments can, for equivalent overall durations, provide heteronuclear correlation spectra at significantly lower concentrations than those currently achievable by conventional 2D NMR acquisitions. A variety of challenges still remain to be solved before bringing the full potential of this new integrated 2D NMR approach to fruition; these outstanding issues are discussed.  相似文献   

3.
Nuclear magnetic resonance (NMR) is a well-known analytical technique for the analysis of complex mixtures. Its quantitative capability makes it ideally suited to metabolomics or lipidomics studies involving large sample collections of complex biological samples. To overcome the ubiquitous limitation of spectral overcrowding when recording 1D NMR spectra on such samples, the acquisition of 2D NMR spectra allows a better separation between overlapped resonances while yielding accurate quantitative data when appropriate analytical protocols are implemented. Moreover, the experiment duration can be considerably reduced by applying fast acquisition methods. Here, we describe the general workflow to acquire fast quantitative 2D NMR spectra in the “omics” context. It is illustrated on three representative and complementary experiments: UF COSY, ZF-TOCSY with nonuniform sampling, and HSQC with nonuniform sampling. After giving some details and recommendations on how to apply this protocol, its implementation in the case of targeted and untargeted metabolomics/lipidomics studies is described.  相似文献   

4.
2D NMR relies on monitoring systematic changes in the phases incurred by spin coherences as a function of an encoding time t(1), whose value changes over the course of independent experiments. The intrinsic multiscan nature of such protocols implies that resistive and/or hybrid magnets, capable of delivering the highest magnetic field strengths but possessing poor temporal stabilities, become unsuitable for 2D NMR acquisitions. It is here shown with a series of homo- and hetero-nuclear examples that such limitations can be bypassed using recently proposed 2D "ultrafast" acquisition schemes, which correlate interactions along all spectral dimensions within a single scan.  相似文献   

5.
Among the methods proposed in recent years toward the acceleration of multidimensional NMR acquisitions is an "ultrafast" approach, capable of delivering arbitrary 2D correlations within a single scan. This scheme operates by parallelizing the indirect-domain temporal incrementation involved in 2D acquisitions, using as aid an ancillary inhomogeneous frequency broadening acting in combination with a train of frequency-shifted RF pulses. So far, all implementations of this frequency broadening have relied on magnetic field gradients; yet the practical performance of gradient-based approaches is sometimes inadequate-for instance when applied on solid samples subject to magic-angle spinning. In order to deal with these cases, an alternative encoding protocol is here introduced and experimentally exemplified, based on exploiting the intrinsic anisotropy that spin interactions exhibit in the solid state as the ancillary broadening in charge of encoding the interactions to be measured. Principles and preliminary examples of the new orientationally encoded ultrafast 2D NMR principle thus resulting are presented and discussed.  相似文献   

6.
Hyphenated HPLC-NMR is an extremely efficient analytical tool, which makes it possible to perform on-flow experiments where 1D NMR spectra are obtained in real time as the analytes are separated and eluted from the chromatographic column. However, it is incompatible with multidimensional NMR methods that form an indispensible tool for the study of complex mixtures. Recently, Frydman and co-workers have proposed an ultrafast 2D NMR approach, where a complete 2D NMR correlation can be recorded in a single scan, thus providing a solution to the irreversibility of hyphenated techniques. This paper presents the first implementation of on-line ultrafast HPLC-NMR. Ultrafast COSY spectra are acquired every 12 s in the course of a chromatographic run performed on a mixture of natural aromatic compounds. The results, obtained on a commercial HPLC-NMR setup, highlight the generality of the ultrafast HPLC-NMR methodology, thus opening the way to a number of applications in the numerous fields in which HPLC-NMR forms a routine analytical tool.  相似文献   

7.
8.
Following unidirectional biophysical events such as the folding of proteins or the equilibration of binding interactions, requires experimental methods that yield information at both atomic-level resolution and at high repetition rates. Toward this end a number of different approaches enabling the rapid acquisition of 2D NMR spectra have been recently introduced, including spatially encoded "ultrafast" 2D NMR spectroscopy and SOFAST HMQC NMR. Whereas the former accelerates acquisitions by reducing the number of scans that are necessary for completing arbitrary 2D NMR experiments, the latter operates by reducing the delay between consecutive scans while preserving sensitivity. Given the complementarities between these two approaches it seems natural to combine them into a single tool, enabling the acquisition of full 2D protein NMR spectra at high repetition rates. We demonstrate here this capability with the introduction of "ultraSOFAST" HMQC NMR, a spatially encoded and relaxation-optimized approach that can provide 2D protein correlation spectra at approximately 1 s repetition rates for samples in the approximately 2 mM concentration range. The principles, relative advantages, and current limitations of this new approach are discussed, and its application is exemplified with a study of the fast hydrogen-deuterium exchange characterizing amide sites in Ubiquitin.  相似文献   

9.
We describe three anisotropic ultrafast (UF) QUadrupolar Ordered SpectroscopY (QUOSY) 2D-NMR experiments (referred to as ADUF 2D NMR spectroscopy) designed for recording the 2H homonuclear 2D spectra of weakly aligned (deuterated) solutes in sub-second experiment times. These new ADUF 2D experiments derive from the Q-COSY, Q-resolved and Q-DQ 2D pulse sequences (J. Am. Chem. Soc. 1999 , 121, 5249) and allow the correlation between the two components of each quadrupolar doublet, and then their assignment on the basis of 2H chemical shifts. The UF 2D pulse sequences are analyzed by using the Cartesian spin-operator formalism for spin I=1 nuclei with a small quadrupolar moment. The optimal experimental/practical conditions as well as the resolution, sensitivity and quantification issues of these ADUF 2D experiments are discussed on comparison to their conventional 2D counterparts and their analytical potentialities. Illustrative ADUF 2D experiments using deuterated achiral/prochiral/chiral solutes in poly-γ-benzyl-L-glutamate based chiral liquid crystals are presented, as well as the first examples of natural abundance deuterium (ANADUF) 2D spectrum using 14.1 T magnetic field and a basic gradient unit (53 G.cm−1) in oriented solvents.  相似文献   

10.
The so-called "ultrafast" nuclear magnetic resonance (NMR) methods enable the collection of multidimensional spectra within a single scan. These experiments operate by replacing traditional t(1) time increments, with a series of combined radiofrequency-irradiation/magnetic-field-gradient manipulations that spatially encode the effects of the indirect-domain spin interactions. Barring the presence of sizable displacements, the spatial patterns thus imparted can be read out following a mixing period with the aid of oscillating acquisition gradients, leading to a train of t(2)-modulated echoes carrying in their positions and phases the indirect- and the direct-domain spin interactions. Both the initial spatial encoding as well as the subsequent spatial decoding procedures underlying ultrafast NMR were designed under the assumption that spins remain static within the sample during their execution. Most often this is not the case, and motion-related effects can be expected to affect the outcome of these experiments. The present paper focuses on analyzing the effects of diffusion in ultrafast two-dimensional (2D) NMR. Toward this end both analytical and numerical formalisms are derived, capable of dealing with the nonuniform spin manipulations, macroscopic sample sizes, and microscopic displacements involved in this kind of sequences. After experimentally validating the correctness of these formalisms these were used to analyze the effects of diffusion for a variety of cases, including ultrafast experiments on both rapidly and slowly diffusing molecules. A series of prototypical schemes were considered including discrete and continuous encoding modes, constant- and real-time manipulations, homo- and heteronuclear acquisitions, and single versus multiple quantum modalities. The effects of molecular diffusion were also compared against typical relaxation-driven losses as they happen in these various prototypical situations; from all these situations, general guidelines for choosing the optimal ultrafast 2D NMR scheme for a particular sample and condition could be deduced.  相似文献   

11.
Multidimensional nuclear magnetic resonance (NMR) provides one of the foremost analytical tools available to elucidate the structure and dynamics of complex molecules in their native states. Executing this kind of experiment generally requires collecting an n-dimensional time-domain signal S, from which the spectrum arises via an appropriate Fourier analysis of its various time variables. This time-domain signal is actually measured directly only along one of the time axes, while the effects introduced by the remaining time variables are monitored via a parametric incrementation of their values throughout independent experiments. Two-dimensional (2D) NMR experiments thus usually require longer acquisition times than unidimensional experiments, 3D NMR is orders-of-magnitude more time consuming than 2D spectroscopy, etc. Very recently, we proposed and demonstrated an approach whereby data acquisition in 2D NMR can be parallelized, enabling the collection of complete 2D spectral sets within a single transient. The present paper discusses the extension of this 2D NMR methodology to an arbitrary number of dimensions. The principles of the ensuing ultrafast n-dimensional NMR approach are described, and a variety of homo- and heteronuclear 3D and 4D NMR spectra collected within a fraction of a second are presented.  相似文献   

12.
Two-dimensional NMR spectroscopy is one of the most important spectroscopic tools for the investigation of biological macromolecules. However, due to the low sensitivity of NMR spectroscopy, it takes usually from several minutes to many hours to record such spectra. Here, the possibility of detecting a bioactive derivative of the sunflower trypsin inhibitor-1 (SFTI-1), a tetradecapeptide, by combining parahydrogen-induced polarization (PHIP) and ultrafast 2D NMR spectroscopy is shown. The PHIP activity of the inhibitor was achieved by labeling with O-propargyl-l -tyrosine. In 1D PHIP experiments a signal enhancement of a factor of approximately 1200 compared to standard NMR was found. This enhancement permits measurement of 2D NMR correlation spectra of low-concentrated SFTI-1 in less than 10 seconds, employing ultrafast single-scan 2D NMR detection. As experimental examples PHIP-assisted ultrafast single-scan TOCSY spectra of SFTI-1 are shown.  相似文献   

13.
Recent years have witnessed increased efforts toward the accelerated acquisition of multidimensional nuclear magnetic resonance (nD NMR) spectra. Among the methods proposed to speed up these NMR experiments is "projection reconstruction," a scheme based on the acquisition of a reduced number of two-dimensional (2D) NMR data sets constituting cross sections of the nD time domain being sought. Another proposition involves "ultrafast" spectroscopy, capable of completing nD NMR acquisitions within a single scan. Potential limitations of these approaches include the need for a relatively slow 2D-type serial data collection procedure in the former case, and a need for at least n high-performance, linearly independent gradients and a sufficiently high sensitivity in the latter. The present study introduces a new scheme that comes to address these limitations, by combining the basic features of the projection reconstruction and the ultrafast approaches into a single, unified nD NMR experiment. In the resulting method each member within the series of 2D cross sections required by projection reconstruction to deliver the nD NMR spectrum being sought, is acquired within a single scan with the aid of the 2D ultrafast protocol. Full nD NMR spectra can thus become available by backprojecting a small number of 2D sets, collected using a minimum number of scans. Principles, opportunities, and limitations of the resulting approach, together with demonstrations of its practical advantages, are here discussed and illustrated with a series of three-dimensional homo- and heteronuclear NMR correlation experiments.  相似文献   

14.
Ultrafast 2D NMR allows the acquisition of a 2D spectrum in a single scan. However, even when the acquisition of ultrafast spectra is carried out under optimized conditions, the appearance and the sensitivity of 2D spectra are often not satisfactory compared with what one could expect from this promising methodology. This is due to limitations in terms of sensitivity, spectral width and resolution, and also to non-ideal lineshapes characterized by asymmetric sinc wiggles. Here, we identify the origin of these distortions by means of numerical simulations compared with experimental data. We then propose a processing approach to improve lineshapes while increasing the sensitivity of ultrafast experiments. The method consists in multiplying the Fourier transform of ultrafast echoes by an optimized apodization function. The principles of the method are described, and a variety of window functions are tested to determine optimum processing conditions. The approach is finally applied to ultrafast 2D spectra, leading to symmetric lineshapes with a sensitivity increased by a factor of 2.  相似文献   

15.
Ultrafast (UF) 2D NMR makes it possible to obtain a 2D NMR spectrum in less than a second. Here, UF‐HSQC experiments are used for the real‐time mechanistic study of an acetal hydrolysis at ¹³C natural abundance, and it is possible to characterize the presence of the hemiacetal, an intermediate with a well‐known short lifetime. The assignments are confirmed and rationalized by quantum calculations of ¹H and ¹³C NMR chemical shifts and natural bonding orbital analysis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
An approach enabling the acquisition of 2D nuclear magnetic resonance (NMR) spectra within a single scan has been recently proposed. A promising application opened up by this "ultrafast" data acquisition format concerns the monitoring of chemical transformations as they happen, in real time. The present paper illustrates some of this potential with two examples: (i) following an H/D exchange process that occurs upon dissolving a protonated protein in D2O, and (ii) real-time in situ tracking of a transient Meisenheimer complex that forms upon rapidly mixing two organic reactants inside the NMR observation tube. The first of these measurements involved acquiring a train of 2D 1H-15N HSQC NMR spectra separated by ca. 4 s; following an initial dead time, this allowed us to monitor the kinetics of hydrogen exchange in ubiquitin at a site-resolved level. The second approach enabled us to observe, within ca. 2 s after the triggering of the reaction, a competition between thermodynamic and kinetic controls via changes in a series of 2D TOCSY patterns. The real-time dynamic experiments hereby introduced thus add to an increasing family of fast characterization techniques based on 2D NMR; their potential and limitations are briefly discussed.  相似文献   

17.
Understanding relationships between the structure and composition of molecular mixtures and their chemical properties is a main industrial aim. One central field of research is oil chemistry where the key question is how the molecular characteristics of composite hydrocarbon mixtures can be associated with the macroscopic properties of the oil products. Apparently these relationships are complex and often nonlinear and therefore call for advanced spectroscopic techniques. An informative and an increasingly used approach is two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy. In the case of composite hydrocarbons the application of 2D NMR methodologies in a quantitative manner pose many technical difficulties, and, in any case, the resulting spectra contain many overlapping resonances that challenge the analytical work. Here, we present a general methodology, based on quantitative artificial neural network (ANN) analysis, to resolve overlapping information in 2D NMR spectra and to simultaneously assess the relative importance of multiple spectral variables on the sample properties. The results in a set of 2D NMR spectra of oil samples illustrate, first, that use of ANN analysis for quantitative purposes is feasible also in 2D and, second, that this methodology offers an intrinsic opportunity to assess the complex and nonlinear relationships between the molecular composition and sample properties. The presented ANN methodology is not limited to the analysis of NMR spectra but can also be applied in a manner similar to other (multidimensional) spectroscopic data.  相似文献   

18.
Ultrafast (UF) NMR spectroscopy is an approach that yields 2D spectra in a single scan. This methodology has become a powerful analytical tool that is used in a large array of applications. However, UF NMR spectroscopy still suffers from an intrinsic low sensitivity, and from the need to compromise between sensitivity, spectral width, and resolution. In particular, the modulation of signal intensities by the spin–spin J‐coupling interaction (J‐modulation) impacts significantly on the intensities of the spectral peaks. This effect can lead to large sensitivity losses and even to missing spectral peaks, depending on the nature of the spin system. Herein, a general simulation package (Spinach) is used to describe J‐modulation effects in UF experiments. The results from simulations match with experimental data and the results of product operator calculations. Several methods are proposed to optimize the sensitivity in UF COSY spectra. The potential and drawbacks of the different strategies are also discussed. These approaches provide a way to adjust the sensitivity of UF experiments for a large range of applications.  相似文献   

19.
Scan and deliver : By combining imaging‐based spectral/spatial 2D radiofrequency manipulations (see scheme, left) with Hadamard‐weighting principles, 2D NMR spectra can be retrieved within a single scan (right). This approach can give homo‐ or heteronuclear correlations with an enhanced sensitivity over conventional ultrafast 2D NMR spectroscopy.

  相似文献   


20.
A method to detect NMR spectra from heteronuclei through the modulation that they impose on a water resonance is exemplified. The approach exploits chemical exchange saturation transfers, which can magnify the signal of labile protons through their influence on a water peak. To impose a heteronuclear modulation on water, an HMQC‐type sequence was combined with the FLEX approach. 1D 15N NMR spectra of exchanging sites could thus be detected, with about tenfold amplifications over the 15N modulations afforded by conventionally detected HMQC NMR spectroscopy. Extensions of this approach enable 2D heteronuclear acquisitions on directly bonded 1H–15N spin pairs, also with significant signal amplification. Despite the interesting limits of detection that these signal enhancements could open in NMR spectroscopy, these gains are constrained by the rates of solvent exchange of the targeted heteronuclear pairs, as well as by spectrometer instabilities affecting the intense water resonances detected in these experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号