首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
地物精细化分类一直是遥感领域的研究热点之一,也是生物量计算、全球碳循环、能量流动等研究的重要前提。为实现复杂场景下的地物高精度识别分类,本文基于高光谱激光雷达空间-光谱一体化同步获取优势,提出了基于空谱特征优化选择的高光谱激光雷达地物分类流程,构建了多种适用于高光谱激光雷达数据的空谱特征,并通过空谱特征优化选择,确定最优空谱特征组合进而实现高精度地物分类。14类地物分类结果表明,联合多种空谱特征,可优化某些类别因空间结构复杂造成光谱获取准确度不高从而引起的错误分类现象,总体分类精度可达95.57%,平均分类精度为84.37%;基于空谱特征优化选择确定最优空谱特征组合,可有效地消除特征冗余,使得总体分类精度进一步提高1.56%,平均分类精度提高4.36%。基于高空间分辨与高光谱分辨的一体化成像探测优势,高光谱激光雷达技术在地物精细化分类领域极具研究潜力与商业价值。  相似文献   

2.
传统的稀疏表示分类方法仅利用图像数据的稀疏特性分类,未利用高光谱图像的邻域信息,为此提出了一种联合稀疏特性和邻域相似度量的分类方法.该方法首先利用稀疏表示揭示出数据的稀疏特性,然后计算在各类样本中的稀疏相似性,并结合邻域特性,构建数据在各类样本中的稀疏-邻域联合相似关系,最后根据联合相似性大小判断数据类别.在利用数据的稀疏特性的同时结合像元的邻域信息,增强各种地物类别间的区分性,提升分类效果.在Indian Pines和Pavia U高光谱数据集上的实验表明:本文算法的分类精度高于其他方法,总体分类精度分别达到了81.69%和86.59%,能得到具有更多同质区域的分类结果图,拥有更好的总体分类精度、平均分类精度和Kappa系数.  相似文献   

3.
空-谱二维蚁群组合优化SVM的高光谱图像分类   总被引:1,自引:0,他引:1  
提出了一种空-谱二维特征蚁群组合优化支持向量机的高光谱图像分类算法。利用两类蚁群分别在光谱维空间和样本分布空间交替搜索最大类间距波段组合和异质样本,提取最优特征波段,降低了高光谱的波段信息冗余,去除训练样本中的异质样本,优化了训练样本特征空间分布。将蚁群组合优化后的高光谱图像和训练样本应用到支持向量机(SVM)分类器中,扩大了特征空间类间距,提高了SVM算法的分类精度。实验表明该算法总分类精度达95.45%,Kappa系数0.925 2,是一种分类精度较高的高光谱图像分类方法。  相似文献   

4.
针对传统高光谱影像特征提取算法大多仅考虑光谱信息或提取空间信息不够精细的问题,提出了一种监督空间正则化流形鉴别分析(SSRMDA)算法,以提高遥感地物的分类性能。该算法首先利用样本数据的标签信息构建谱域类内图和类间图,以揭示高光谱数据潜在的非线性流形结构;然后构建空域类内图,并将空间信息以正则化方式与光谱信息融合,实现谱-空信息的有效融合,并可在低维空间内使类内数据更加聚集,增强嵌入数据的可分性。在Indian Pines和Washington DC Mall数据集上的实验表明,所提算法的总体分类精度分别为91.58%和96.67%,说明所提算法有效提升了地物分类能力,尤其在小样本下的优势更为明显,更有利于实际应用。  相似文献   

5.
传统的高光谱遥感影像分类算法侧重于光谱信息的应用。随着高光谱遥感影像的空间分辨率的增加,高光谱影像中相同类别的地物在空间分布上呈现聚类特性,将空间特性有效地应用于高光谱遥感影像分类算法对分类精度的提升非常关键。但是,高光谱影像的高分辨率提供空间聚类特性的同时,在不同地物边缘处表现出的差异性更加明显,若不对空间邻域像素进行甄选,直接将邻域光谱信息引入,设计空谱联合稀疏表示进行图像分割,则分类误差较大,收敛速度大大降低。将光谱角引入空谱联合稀疏表示图像分类理论中,提出了一种基于邻域分割的空谱联合稀疏表示分类算法。该算法利用光谱角计算相邻像素的空间相似度,剥离相似度较低的邻域像素,将相似度高的邻域像素定义为同类地物,引入空谱联合稀疏表示模型中,采用子联合空间追踪算子和联合正交匹配追踪算子对其优化求解,以最小重构误差为准则进行分类。选取AVIRIS及ROSIS典型光谱影像数据进行实验仿真,从中可以看出,随着光谱角分割阈值的提高,复杂的高光谱影像分类精度和平滑区域的高光谱影像分类精度均逐步提高,表明邻域分割在空谱联合稀疏表示分类中的必要性。  相似文献   

6.
光谱谐波分析的新型HAC非监督分类器   总被引:1,自引:0,他引:1  
高光谱影像分类是识别影像信息的重要途径之一,研究其算法对地物识别、动态变化监测和专题信息提取等方面具有重要意义。非监督分类由于其具有无须先验知识的特点,被广泛应用于高光谱影像分类。结合谐波分析理论提出一种新的高光谱影像非监督分类算法,即谐波分析分类器(harmonic analysis classifier,HAC)。首先,该算法统计第一谐波分量并绘制其直方图,根据波峰数目及位置确定初始地物类别和聚类中心像元。然后将待分类像元光谱的波形信息映射到谐波分解次数、振幅和相位的特征空间中,利用同类地物在特征空间中表现聚集性这一特征,根据最小距离原则对待分类像元进行归类。最后,计算聚类中心像元间的欧式距离,通过设置距离阈值完成类间合并,从而达到高光谱影像分类的目的。提取两种地物类别的光谱曲线,经谐波分析后得到谐波分解次数、振幅和相位量,并分析其在特征空间中的分布情况验证了HAC算法的正确性。同时将HAC算法应用到EO-1卫星的Hyperion高光谱影像得到其分类结果,通过对比K-MEANS,ISODATA和HAC算法的高光谱影像分类结果,证实HAC算法作为一种非监督分类方法在高光谱影像分类方面具有较好的应用性。  相似文献   

7.
基于ICA与SVM算法的高光谱遥感影像分类   总被引:5,自引:0,他引:5  
提出了一种利用独立分量分析(ICA)与支撑向量机(SVM)算法进行高光谱遥感影像分类的新方法。采用ICA算法对高光谱遥感影像(PHI传感器获取,80波段)进行了特征提取,并以提取出的影像数据(光谱维数为20)构建SVM分类器。对SVM算法进行核函数删选与参数寻优后,发现采用RBF核的SVM算法(C=103,γ=0.05)分类结果最佳,分类精度与Kappa系数分别达94.5127%与0.935 1,优于BP-神经网络(分类精度39.4758%,Kappa系数0.315 5)、波谱角分类(分类精度80.282 6,Kappa系数0.770 9)、最小距离分类(分类精度85.462 7%,Kappa系数0.827 7)以及最大似然分类(分类精度86.015 6%,Kappa系数0.835 1)4种方法。针对分类结果常出现的"椒盐"现象,利用形态学算子对SVM(RBF核)分类结果进行了类别集群处理,将分类精度与Kappa系数分别提高至94.758 4%与0.938 0,获得了更接近实况的分类图像。结果表明:ICA结合SVM算法准确率高,是高光谱遥感影像分类的优选方法,且类别集群是优化影像分类的有效方法之一。  相似文献   

8.
稀疏流形聚类和嵌入算法通过仿射空间中的稀疏表示获得稀疏系数,并能由稀疏系数自适应地选取来自同一流形的数据点.但稀疏流形聚类和嵌入算法没有直接的投影矩阵,且为非监督学习方法.针对稀疏流形聚类和嵌入算法算法的不足,提出一种新的监督稀疏流形嵌入算法.该方法首先在仿射空间中采用稀疏优化法得到稀疏系数,然后根据稀疏系数构建相似权值,并在权值中嵌入样本类别信息,增加同类数据间的聚集性,并在低维嵌入空间中保持这种相似性不变,提取鉴别特征来提升分类性能.实验结果表明:该文方法不仅能保持数据的稀疏特性,而且通过利用样本数据的类别信息使同类数据在低维空间尽可能聚集,提取鉴别特征,进而改善高光谱影像的地物分类效果.  相似文献   

9.
高光谱遥感影像分类通常基于地物光谱特征,但影像中同时还存在丰富的空间信息。空间信息的有效利用能显著提高图像分类效果。因其具有的特殊结构,卷积神经网络(CNN)已成功地应用在图像分类领域,对二维图像分类具有很好的效果。如何通过深度学习并结合空间光谱信息来提高分类性能是一个关键问题。结合高光谱影像中的空间特征与光谱信息,提出一种适合于高光谱像素级分类的深度学习三维卷积神经网络模型(3D-CNN),并在初始分类的基础上利用多标签条件随机场进行优化。选取三个通用公开高光谱数据集(Indian Pines数据集、Pavia University数据集、Pavia Center数据集)进行测试,结果表明分类优化后精度得到很大提升,总体精度可达98%,Kappa系数达到97.2%。  相似文献   

10.
一种光谱与纹理特征加权的高分辨率遥感纹理分割算法   总被引:1,自引:0,他引:1  
高分辨率遥感影像呈现极其丰富的光谱和结构信息,传统的基于光谱的遥感影像分割方法往往使得分割区域过于细碎且分割精度不高.尝试将纹理信息引入到特征空间以期解决该问题.本文算法中,特征空间由光谱和纹理两类构成,并采用加权最小距离分类器.光谱信息通过对原始影像的变带宽均值漂移滤波获得,纹理信息由对原始影像逐波段采用多尺度伽博(Gabor)滤波器组滤波获得;依据训练样区中各特征维的方差确定该地物类别分类时特征维的权重,并通过训练样区的特征加权平均获得各地物类别的聚类中心;最后,将像素点归为到加权聚类中心距离最小的类别.实验结果表明,提出的均值漂移带宽确定方法是有效的,加权融合算法较基于光谱的分割方法在分割精度上有一定程度的提高.  相似文献   

11.
基于高光谱图像技术的苹果粉质化LLE-SVM分类   总被引:3,自引:0,他引:3  
苹果粉质化程度是衡量其内部品质的一个重要因素,采用了高光谱散射图像技术进行苹果粉质化的无损检测。针对高光谱散射图像数据量大的特点,提出了局部线性嵌入(local linear embedded,LLE)和支持向量机(support vector machine,SVM)相结合的用于检测苹果粉质化的新分类方法。LLE是一种通过局部线性关系的联合来揭示全局非线性结构的非线性降维方法,能有效计算高维输入数据在低维空间的嵌入流形。对降维后的高光谱数据采用SVM进行分类。将LLE-SVM分类方法与传统的SVM分类方法比较,仿真结果表明,对高光谱数据而言,用LLE-SVM得到的训练精度高于单纯使用SVM的训练精度;降维前后,分类器的测试精度变化不大,波动范围不超过5%。LLE-SVM为高光谱散射图像技术进行苹果粉质化无损检测提供了一个有效的分类方法。  相似文献   

12.
针对旁路信号样本在高维空间中的分布,提出了一种基于核主成分分析的硬件木马检测方法,该方法能够找出旁路信号样本分布中的非线性规律,将高维的旁路信号映射到低维子空间同时更精确地反映旁路信号样本的分布特性,从而发现由木马引起的非线性特征差异。针对AES加密电路植入约占电路3%的组合型木马并进行检测,实验结果表明,该方法能够有效分辨基准电路与含木马电路之间旁路信号的非线性特征差异,实现木马的检测,并取得比K-L变换更好的检测效果。  相似文献   

13.
An improvement to the nearest neighbor classifier (INNC) has shown its excellent classification performance on some classification tasks. However, it is not very clearly known why INNC is able to obtain good performance and what the underlying classification mechanism is. Moreover, INNC cannot classify low-dimensional data well and some high-dimensional data in which sample vectors belonging to different class distribution but have the same vector direction. In order to solve these problems, this paper proposes a novel classification method, named kernel representation-based nearest neighbor classifier (KRNNC), which can not only remedy the drawback of INNC on low-dimensional data, but also obtain competitive classification results on high-dimensional data. We reveal the underlying classification mechanism of KRNNC in details, which can also be regarded as a theoretical supplement of INNC. We first implicitly map all samples into a kernel feature space by using a nonlinear mapping associated with a kernel function. Then, we represent a test sample as a linear combination of all training samples and use the representation ability to perform classification. From the way of classifying test samples, KRNNC can be regarded as the nonlinear extension of INNC. Extensive experimental studies on benchmark datasets and face image databases show the effectiveness of KRNNC.  相似文献   

14.
Existing manifold learning algorithms use Euclidean distance to measure the proximity of data points. However, in high-dimensional space, Minkowski metrics are no longer stable because the ratio of distance of nearest and farthest neighbors to a given query is almost unit. It will degrade the performance of manifold learning algorithms when applied to dimensionality reduction of high-dimensional data. We introduce a new distance function named shrinkage-divergence-proximity (SDP) to manifold learning, which is meaningful in any high-dimensional space. An improved locally linear embedding (LLE) algorithm named SDP-LLE is proposed in light of the theoretical result. Experiments are conducted on a hyperspectral data set and an image segmentation data set. Experimental results show that the proposed method can efficiently reduce the dimensionality while getting higher classification accuracy.  相似文献   

15.
王昕  康哲铭  刘龙  范贤光 《光子学报》2020,49(3):124-133
针对多通道拉曼成像系统常会受荧光背景、噪声等非线性因素的影响而导致拉曼光谱重建结果一般的问题,提出了一种基于高斯核主成分分析的拉曼光谱重建算法.首先利用相似度因子对标定样本数据集进行预处理,其次通过高斯核函数将标定样本以非线性形式映射至高维特征空间,接着在特征空间中对映射后的数据集提取基函数并通过伪逆法求得与之对应的基函数系数.使用聚甲基丙烯酸甲酯作为测试样本,并引入均方根误差来评估拉曼光谱重建结果的准确性.实验结果表明,相比传统的伪逆法与维纳估计法,该算法具有更高的重建精度及抗噪能力,且能有效降低标定样本中不良数据和成像系统中非线性因素对拉曼光谱重建的影响.因此,该算法可以为多通道拉曼快速成像提供一种有效的拉曼光谱重建算法.  相似文献   

16.
针对高光谱图像中同质异谱现象造成的分类精度较低以及边缘像元在联合空间光谱信息分类时特征易混淆的问题,提出了基于分层引导滤波与最近邻正则化子空间的分类方法.利用主成分分析获得高光谱图像的第一主成分.以第一主成分为引导图像对高光谱图像执行分层引导滤波操作,引导滤波的边缘保护特性,有效阻隔了边缘处类间光谱信息的混淆,并减小了局部区域类内光谱的差异,最后将预处理后的高光谱图像送至最近邻正则化子空间分类器进行分类识别.在Indian Pines,Salinas以及GRSS_DFC_2013高光谱数据集上与现有的方法进行对比实验.结果表明,本文提出的方法在三个数据集上分别取得了98.63%,99.13%与99.42%的总体分类准确率,有着更优的分类精度与可视化效果.  相似文献   

17.
新疆天山北坡山地草甸是天山山区草地生产力最高的草地类型,草地退化情况较为严重。对草地植被进行分类与识别,监测草地生态系统本底状况,可以快速、准确、有效的评价草地退化动态与程度,是进行生态重建的关键。为了探索适合草地植被的分类方法,选择天山北坡中段山地草甸植被作为研究对象,利用高光谱成像光谱仪(SOC710VP)获取了典型植被多季相(4个关键生育期)的原始反射光谱数据,通过多项式卷积平滑(S-G)及最小噪声分离(MNF)变换对光谱数据进行平滑去噪及降维处理,分别采用支持向量机(SVM)、BP人工神经网络(BP-ANN)及波谱角填图(SAM)三种方法建立分类模型,并对分类结果进行了对比分析。结果表明:使用S-G滤波及MNF变换预处理方法可以有效的对草地植被高光谱数据进行降维除噪,获得较平滑的光谱曲线,减少了数据的冗余程度并缩短了分类时间。不同季相山地草甸植被的“绿峰”、“红谷”及“红边”等参数差异较大,在植被生长旺盛期(4月—5月)的光谱曲线特征比黄枯期的光谱曲线特征更容易区分,这个时期分类精度较高。SVM分类模型在返青期(4月)和分蘖(枝)期(5月)总体分类精度均超过了90%,Kappa系数也超过了0.9;利用SVM方法进行分类时,在植物生长旺盛期(4月—5月)Polynomial核函数分类精度较高,植物成熟期(6月—9月)径向基核(RBF)函数分类精度较高。BP-ANN在分蘖(枝)期分类精度较高,总体分类精度为91.07%,Kappa系数为0.89,其他时期分类效果一般,虽然在MNF变换降维后能极大的缩短数据处理时间,但分类时间还是较SVM时间要长。SAM分类速度最快,但在各生育期的分类精度都较低,最高值为分蘖(枝)期的总体分类精度77.80%,Kappa系数为0.73。因此,利用Polynomial核函数的SVM分类模型适合对山地草甸植被进行分类识别,分类结果类别完整,准确度高,误分、错分现象相对较少,相比BP-ANN及SAM等高光谱数据分类方法具有较大的优势。  相似文献   

18.
基于谱聚类与类间可分性因子的高光谱波段选择   总被引:1,自引:0,他引:1  
随着遥感技术和成像光谱仪的发展,高光谱遥感图像的分辨率不断提高,其庞大的数据量在提高其遥感探测能力的同时,也给分析和处理带来了很大的困难。高光谱波段选择可以有效减少数据冗余,提高分类识别精度和处理效率。因此如何从多达数百个波段的高光谱图像中选择出具有较好分类识别能力的波段组合是亟待解决的问题。针对上述问题,采用基于图论的谱聚类算法,将原始高光谱图像中的波段作为待聚类的数据点,利用互信息描述两两波段间的相似度,生成相似度矩阵。再根据图谱划分理论,将相似度矩阵生成的非规范化图拉普拉斯矩阵进行谱分解,得到类间相似度小且类内相似度大的类簇;然后根据地物类型计算各波段的类间可分性因子,将其作为类簇内进一步选择代表性波段的参考指标,达到降维的目的;最后通过支持向量机与最小距离分类方法对波段选择后的图像分类。该方法区别于传统的无监督聚类方法,采用基于图论的谱聚类算法,并根据先验知识计算类间可分性因子来选择波段。通过与自适应波段选择算法和基于自动子空间划分的波段指数算法的对比实验,结果表明:两组实验当聚类数目达到相对最佳时,该波段选择方法支持向量机图像总分类精度达到94.08%和94.24%以上,最小距离分类图像总分类精度达到87.98%和89.09%以上,有效保留了光谱信息,提高了分类精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号