首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The electron ionization fragmentation patterns of 5-methyl-3-(o-, m- and p-tolyl)-1,2,4-oxadiazoles (1a—c) have been examined by metastable ion and high resolution mass spectrometry. The o-tolyl isomer loses CO and C2H2O from the metastable molecular ion whereas the m- and p-tolyl isomers lose only CH3CN thus indicating a strong ortho effect in directing the fragmentation in 1a. Slight differences between o-, m- and p-tolyl isomers in the collisional activation fragmentation of stable [C7H6N]+ ions suggest that structural differences exist even after a series of extensive rearrangements of the molecular ions. Metastable ion kinetic energy (MIKE) and collisional activation (CA) spectra were very helpful in providing valuable information about many fragments.  相似文献   

2.
The dissociation rates and energetics of the loss of halogen atoms from energy-selected halotoluene ions were investigated by photoelectron photoion coincidence (PEPICO) and collisional activation (CA) mass spectrometric experiments. Dissociation onsets, determined from the dissociation rates measured as a function of the internal energy of the parent ion, revealed the formation of three [C7H7]+ isomers, which were identified, on the basis of the CA data, as the tolyl, benzyl and tropylium ions. All of the ions investigated produced a mixture of isomeric ions. Only iodotoluene ions produced any tolyl product ions by a direct bond cleavage. The bromo- and chlorotoiuene ions produced mixtures of benzyl and tropyl ions. The observed two-component decay rates of the iodotoluene ions revealed the participation of a lower energy [C7H7I]+ ˙ isomer in the dissociation process. The identity of this isomer is not known but it probably does not have the cycloheptatriene ion structure because considerable kinetic energy was released in this dissociation.  相似文献   

3.
The electron impact ionization efficiency curves for the parent ions and the [C7H7]+ fragment ion formed from monosubstituted alkyl benzenes (R?CH3? n-C3H7) have been studied by applying the inverse convolution technique of Vogt and Pascual to the first derivative ionization efficiency curves of the ions. Ionization and appearance energies measured for the ions at threshold are in good agreement with recently published photoionization values. Structures in the ionization efficiency curves (higher energy processes) are also reported for about 4 e V above threshold. The heats of formation calculated for [C7H7]+ fragment ions obtained from toluene and ethyl benzene at threshold are equal to 864 and 865 kJ mol?1 respectively, and are consistent with the tropylium structure. However, for the [C7H7]+ fragment ion obtained from n-propyl benzene at threshold the calculated heat of formation is equal to 923 kJ mol?1 and probably corresponds to a benzyl structure.  相似文献   

4.
The use of kinetic energy release measurements in the structural characterization of ions formed in the mass spectrometer and in the determination of fragmentation mechanisms is demonstrated. In combination with information on the mode of energy partitioning in some of these reactions this allows the following conclusions: (i) The metastable [C7H8]8˙ ions formed from toluene, cyclohepatatriene, n-butylbenzene, the three methyl anisoles, methyl tropyl ether and benzyl methyl ether all undergo loss of H˙ from a common structure. (ii) The metastable [C7H7]+ ions generated from the same sources and from benzyl bromide, benzyl alcohol, p-xylene and ethylbenzene appear to undergo loss of acetylene from both the benzylic and the tropylium structures. (iii) The metastable [C7H7OCH3]+˙ ether molecular ions undergo loss of CH3˙ by two types of mechanism, simple cleavage to give the aryloxy cation (not observed for benzyl methyl ether) and a rearrangement process which appears to lead to protonated tropone as the product. (iv) Loss of formaldehyde from the metastable [C7H7OCH3]+˙ molecular ions involves hydrogen transfer via competitive 4- and 5-membered cyclic transition states in the case of the anisoles and in the case of methyl tropyl ether, while for benzyl methyl ether, hydrogen transfer in the nonisomerized molecular ion occurs via a 4-membered cyclic transition state to yield the cycloheptatriene molecular ion.  相似文献   

5.
Translational energy release measurments on metastable ions are used in the comparison of the structures of isomeric ions. Metastable ions, m2+, formed from m1+ ions as the result of a high energy process in the ion source are compared with isomeric metastable ions formed as daughters from fragmentation of metastable m1+ ions in a field. In the case of o-, m- and p-nitrophenol the structure of the [C5H5O]+ ions formed from [C6H5O]+ ions by these two independent methods is different as verified by comparison of the behaviour of [C5H5O]+ ions formed from several other compounds.  相似文献   

6.
The unimolecular dissociation reactions for [C7H7O]+ ions generated by fragmentation of a series of precursor molecules have been investigated. The metastable kinetic energy values and branching ratios associated with decarbonylation and expulsion of a molecule of formaldehyde (CH2O) from the [C7H7O]+ ions are interpreted as the hydroxybenzyl and hydroxytropylium [C7H7O]+ not interconverting to a common structure on the microsecond time-scale. In addition, similar measurements on protonated benzaldehyde, methylaryloxy and phenyl methylene ether [C7H7O]+ ions are interpreted as the dominant fraction of these decomposing ions having unique structures on the microsecond time-scale. These results are supported by experimental heats of formation calculated from ionization/appearance energy measurements. The experimental heats of formation are determined as: hydroxybenzyl ions, 735 kJ mol?1; hydroxytropylium ions, 656 kJ mol?1; phenyl methylene ether ions, 640 kJ mol?1; methylaryloxy ions 803 kJ mol?1. The combination of the results reported in this paper with previously reported experimental data for stable [C7H7O]+ ions (see Ref. 1, C. J. Cassady, B. S. Freiser and D. H. Russell, Org. Mass Spectrom.) is interpreted as evidence that the relative population of benzyl versus tropylium [C7H7O]+ ion structures from a given precursor molecule is determined by isomerization of the parent ion and not by structural equilibration of the [C7H7O]+ ion.  相似文献   

7.
The 70 eV electron ionization mass spectra of polycyclic aromatic compounds are characterized by the presence of relatively stable multiply charged molecular ions [M]n+ (n=2–4). When generated from the compounds benzene, napthalene, anthracene, phenanthrene, 2,3-benzanthracene, 1,2-benzanthracene, chrysene, 9,10-benzophenanthrene and pyrene, the relative abundances of the multiply charged ions increase dramatically with the number of rings. These compounds form multiply charged molecular ions (n=2, 3) which undergo unimolecular decompositions indicative of considerable ionic rearrangement. The main charge separation processes observed here [M]2+→m1++m2+, [M]3+˙→m3++m→+m42+) involve, in almost every case, one or more of the products [CH3]+, [C2H3]+˙ and [C3H3]+. This suggests the existence of preferred structures amongst the metastable parent ions. Information on the relative importance of the various fragmentation pathways is presented here along with translational energy release data. Some tentative structural information about the metastable ions has been inferred from the translational energy release on the assumption that the released energy is due primarily to coulombic repulsion within the transition state structure. For the triply charged ions these interpretations have necessitated the use of a coulombic repulsion model which takes account of an extra charge. Vertical ionization energies for the process [M]n++G→[M](n+1)+G+e? (charge stripping) have also been determined where possible for n=1 and 2 and the results from these experiments allow the derivation of simple empirical equations which relate successive ionization energies for the formation of [M]2+ and [M]3+˙ to the appearance energy of [M]+˙.  相似文献   

8.
Loss of CO from the molecular ions ([CH3OC6H4COF]+˙) of o-, m- and p-anisoyl fluorides has been investigated by mass-analysed ion kinetic energy (MIKE) spectrometry. This reaction involves fluorine atom migration from the carbonyl group to the benzene ring. In the cases of o- and p-anisoyl fluorides, the fluorine atom migrates via a three-membered transition state to form the molecular ions ([CH3OC6H4F]+˙) of o- and p-fluoroanisoles, respectively. On the other hand, in the case of m-anisoyl fluoride, the fluorine atom migrates from the carbonyl group to the benzene ring via a three- or four-membered transition state.  相似文献   

9.
The ion/molecule reaction of the tolyl cation with dimethyl ether has been investigated using triple quadrupole mass spectrometry. Three isomers with [C7H7]+ composition, the 3-tolyl, benzyl, and tropylium cations, were individually selected and reacted with dimethyl ether at a pressure of 1 mtorr in the second quadrupole (Q2) collision cell. Only the tolyl ion reacted to yield a methoxylated product ion peak at m/z 122. This reaction product having m/z 122 is postulated to be identical in structure with the molecular ion of 3-methyl anisole, as supported by thermochemical data and the similarity of the collision induced dissociation (CID) daughter ion mass spectra of the product ion and the molecular ion of authentic 3-methyl anisole. The daughter ion mass spectra of the three [C7H7]+ isomers during CID, by using a triple quadrupole mass spectrometer, are nearly identical; on the other hand, the analytical approach based on the ion/molecule reaction with dimethyl ether clearly exhibits distinct gas-phase chemistry reflecting structural differences among the isomers. Sot  相似文献   

10.
The extent of isomerization of [C9H10] ions, with lifetimes of approximately 10?11 and 10?6 s has been investigated using field ionization, collisionally activated dissociation and charge stripping techniques. The [C9H10] ions which were investigated included the molecular ions of α-methylstyrene, β-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, indan, cyclopropylbenzene, allylbenzene and the product of water loss from 3-phenylpropanol. The field ionization spectra of all the C9H10 hydrocarbons were different indicating that isomerization to a common ion structure had not occurred to a measurable extent for ions with lifetimes of approximately 10?11 s. Collisionally activated dissociation and charge stripping results indicated that most of the [C9H10] ions continued to maintain unique ion structures (or mixtures of structures) at ion lifetimes of 10?6 s. Possible exceptions are the [C9H10] ions from allylbenzene and cyclopropylbenzene which gave indistinguishable collisionally activated dissociation and charge stripping spectra.  相似文献   

11.
Positive-ion, methane-mediated chemical ionization mass spectra were measured for simple bifunctional aromatic compounds of the type m-XCH2C6H4CH2Y, where X = NH2 and N(CH3)2, and Y = OH and OCH3. Essentially only three peaks of ions, [MH]+, [MH – XH]+ and [MH – YH]+, have appeared for each compound. Since the two functional groups XCH2– and YCH2– do not interact with each other after protonation or after fragmentation, they are assumed to be protonated and to undergo fragmentations independently. The relative protonation susceptibility and fraction of fragmenting [MH]+ can be estimated for each functional group in these compounds. A semi-quantitative interpretation of the observed spectra is presented.  相似文献   

12.
The O?˙ chemical ionization mass spectrri of the C8H10 alkylbenzenes, o-, m-. andp -xylene and ethylbenzene, show formation of [M ? H + O]?, [M ? H]?, [M ? H2]?˙ and, for the xylenes, [M ? CH3 + O]? as primary reaction products; the relative importance of these products depends on the isomer. However, [OH]? is a primary product from reaction of O?˙ with both the C8H10 isomers and hydrogen-containing impurities; [OH]? reacts further with the alkylbenzenes to produce [M ? H]? with the result that the chemical ionization mass spectra depend on experimental conditions such as sample size and the presence of impurities. The collision-induced charge inversion mass spectra of the [M ? H + O]? and [M ? H]? products allow only distinction of ethylbenzene from the xylenes. However, the collision-induced charge inversion mass spectra of the [M ? H2]?˙ ions show differences which allow identification of each isomer.  相似文献   

13.
The [M] → [M ? CH3] reaction in a series of m- and p-X substituted ethylbenzenes has been studied by wide range electron energy kinetics and metastable ion characteristics techniques. By this approach, qualitative measures of activation evergy differences between [XC6H4CH2]+ ions derived from m- and p-X isomer substrates have been secured, for both their formation and further decomposition. These evergy differences are consistent with (but do not prove) ion structures that have been suggested by previous work in this area, involving the use of isotope labeling, and ionization and appearance potential methods.  相似文献   

14.
[C2H5S]+ ions (m/e 61) with different initial structures were generated in the mass spectrometer from twelve precursor ions. Abundance ratios of competing metastable ion decompositions were used to determine whether these ions decompose through the same or different reaction channels. It was concluded that all [C2H5S]+ ions isomerize to a common structure or mixture of structures prior to decomposition in the first field free region. From 13C labelling experiments it was concluded that [C2H5S]+ ions generated from the molecular ions of 2-propanethiol-2-[13C], partially rearrange to a symmetrical structure before decomposition to [CHS]+ and CH4, whereas in [C2H5S]+ ions generated from the the molecular ions of 1,2-bis-(thiomethoxy-[13C]) ethane, the two carbon atoms become fully equivalent before CH4 loss occurs.  相似文献   

15.
The mode of ionization of a molecule has a strong influence on its behavior in the mass spectrometer and thus on the information that can be obtained from its mass spectrum. In chemical ionization a reagent gas, e.g. methane, is first ionized by electron impact. The ions formed in ion-molecule reactions, in particular [CH5]+, [C2H5]+, and [C3H5]+, then react “chemically” with the substrate M in fast acid/base type reactions to form ions of the type [MH]+, [M(C2H5)]+, etc., which subsequently fragment to various extents. Alternatively, chemical ionization can be effected by charge exchange, in that ions of a reagent gas, e.g. [He]+?, react with the substrate M to form molecular ions [M]. Chemical ionization can thus be conducted in a more or less mild fashion and the extent of the fragmentation can be controlled over a very wide range.  相似文献   

16.

Abstract  

O-Tolyl/benzyl dithiocarbonates, ROCS2Na (R = o-, m-, or p-CH3C6H4–, and –CH2C6H5), were synthesized and characterized. These new ligands reacted with PCl3/POCl3 in refluxing toluene which resulted in the formation of phosphorus(III) and phosphorus(V) tolyl/benzyl dithiocarbonates corresponding to [(ROCS2) n PCl3−n ] and [(ROCS2) n POCl3−n ] (R = o-, m-, or p-CH3C6H4–, and –CH2C6H5; n = 1, 2, 3). These pale yellow liquid compounds were characterized by IR, mass, and NMR (1H, 13C, and 31P) spectral studies, which suggest the dithiocarbonate ligands bind in a monodentate mode leading to P–S–C linkages in these derivatives.  相似文献   

17.
Under electron impact o-phthalanilic acids show the retrosynthetic reaction previously described for other phthalamic acids. As primary amine derivatives they undergo thermal and electron impact induced water loss. Like the molecular ions of the related phthalimides, their [M? H2O] do not give [C8H6NO2]+ fragments, which are obtained from the N-cyclohexyl derivative. The structure of such fragments is investigated by collisionally activated mass analysed ion kinetic energy spectra, and compared with the [MH]+ of phthalimide, obtained by chemical ionization with CH4 or NH3 and assumed to be possible models.  相似文献   

18.
Collisional activation spectra were used to characterize isomeric ion structures for [CH5P] and [C2H7P] radical cations and [C2H6P]+ even-electron ions. Apart from ionized methylphosphane, [CH3PH2], ions of structure [CH2PH3] appear to be stable in the gas phase. Among the isomeric [C2H7P] ions stable ion structures [CH2PH2CH3] and [CH2CH2PH3]/[CH3CHPH3] are proposed as being generated by appropriate dissociative ionization reactions of alkyl phosphanes. At least three isomeric [C2H6]+ ions appear to exist, of which \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} - \mathop {\rm P}\limits^{\rm + } {\rm H = CH}_{\rm 2} $\end{document} could be identified positively.  相似文献   

19.
The temperature effect on the single and double hydrogen atom transfer reactions in o-, m- and p-toluic acid n-butyl esters and isobutyl esters has been investigated. For the meta and para isomers, the abundance of the m/z 137 ion [C8H9O2]+ generated by a double hydrogen atom transfer reaction increases relative to the m/z 136 ion [C8H8O2]+˙ generated by a single hydrogen atom transfer reaction upon lowering the temperature of the ionization chamber. On the other hand, the ratio of the peak abundances [137]+/[136]+ for the ortho isomers is nearly constant when the temperature is changed. It is shown that this is due to the difference between the appearance energies of the m/z 136 and m/z 137 ions.  相似文献   

20.
Experimental and theoretical studies on the oxidation of saturated hydrocarbons (n‐hexane, cyclohexane, n‐heptane, n‐octane and isooctane) and ethanol in 28 Torr O2 or air plasma generated by a hollow cathode discharge ion source were made. Ions corresponding to [M + 15]+ and [M + 13]+ in addition to [M ? H]+ and [M ? 3H]+ were detected as major ions where M is the sample molecule. The ions [M + 15]+ and [M + 13]+ were assigned as oxidation products, [M ? H + O]+ and [M ? 3H + O]+, respectively. By the tandem mass spectrometry analysis of [M ? H + O]+ and [M ? 3H + O]+, H2O, olefins (and/or cycloalkanes) and oxygen‐containing compounds were eliminated from these ions. Ozone as one of the terminal products in the O2 plasma was postulated as the oxidizing reagent. As an example, the reactions of C6H14+? with O2 and of C6H13+ (CH3CH2CH+CH2CH2CH3) with ozone were examined by density functional theory calculations. Nucleophilic interaction of ozone with C6H13+ leads to the formation of protonated ketone, CH3CH2C(=OH+)CH2CH2CH3. In air plasma, [M ? H + O]+ became predominant over carbocations, [M ? H]+ and [M ? 3H]+. For ethanol, the protonated acetic acid CH3C(OH)2+ (m/z 61.03) was formed as the oxidation product. The peaks at m/z 75.04 and 75.08 are assigned as protonated ethyl formate and protonated diethyl ether, respectively, and that at m/z 89.06 as protonated ethyl acetate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号