共查询到19条相似文献,搜索用时 83 毫秒
1.
为提高融合图像的可视性,解决传统红外与可见光图像融合算法中存在的边缘特征缺失、细节模糊的问题,提出了一种潜在低秩表示框架下基于卷积神经网络结合引导滤波的红外与可见光图像融合算法。该算法首先利用潜在低秩表示对源图像进行分解,得到源图像的低秩分量和显著分量。其次,利用卷积神经网络根据源图像的特征信息,得到权值图。再次,通过引导滤波算法对权值图进行边缘锐化,然后再将优化后的权值图分别与源图像的低秩分量和显著分量融合,得到融合图像的低秩分量和显著分量。最后,将融合图像的低秩分量和显著分量叠加,得到最终的融合图像。实验结果表明,该算法在主观评价和客观指标上均优于传统的红外与可见光图像融合算法。 相似文献
2.
伴随高光谱图像的广泛使用,高光谱图像技术得到长足的发展,其中高光谱图像异常检测技术越发受到重视。为了解决传统高光谱图像异常检测技术的实用性和检测效果不佳的问题,提出一种新颖的低秩表示检测算法。对于高光谱图像,大部分背景像元均可以被少量主要的背景像元组合近似地表示,且它们的表示系数将会位于低秩的空间中。在剩下无法被主要背景像元表示的稀疏部分中存在着异常像元,则可以被检测算法提取出来。在低秩表示中,背景像元字典的构建将会影响高光谱图像中背景像元的表示。如直接从现有高光谱图像中提取背景像元构建字典,会导致异常像元对背景像元字典的污染。而利用待检测高光谱图像观测数据和由光谱组成原理可合成的潜在未观测数据来构建背景像元字典,提取出背景像元的主要特征,有利于更好地分离出稀疏异常像元的信息。并且高光谱图像数据存在高维几何结构特点,通过引入拉普拉斯矩阵来约束空间中局部相似的像元对于待检测像元的表示作用,获得更接近于真实的表示系数。实验结果分别在仿真数据和真实数据上验证,与传统方法相比,提出的方法通过有效地突出异常像元提高了检出率和抑制了背景像元,降低了误检率。 相似文献
3.
为了使融合结果突出目标并发掘更多细节,提出了一种基于目标提取与引导滤波增强的红外与可见光图像融合方法。首先对红外图像依据二维Tsallis熵和基于图的视觉显著性模型提取目标区域。然后对可见光与红外图像分别进行非下采样Shearlet变换(NSST),并对所得低频分量进行引导滤波增强。由增强后的红外图像和可见光图像低频分量基于目标提取的融合规则得到融合图像的低频分量,高频分量则根据方向子带信息和取大来确定。最后经NSST逆变换得到融合图像。大量实验结果表明,本文方法在增强融合图像空间细节的同时,有效突出了目标,并且在信息熵、平均梯度等指标上优于基于拉普拉斯金字塔变换、基于小波变换、基于平稳小波变换、基于非下采样Contourlet变换(NSCT)、基于目标提取与NSCT变换等。 相似文献
4.
由于可见光图像在低光照环境下其可视性较差,为了提高红外与弱可见光图像融合的效果,提出了一种基于对比度增强和柯西模糊函数的图像融合算法.首先用改进的引导滤波自适应增强提高弱可见光图像暗区域的可视性;其次,利用非下采样剪切波变换将红外和增强后的弱可见光图像分解,得到相应的低频和高频子带;再后,分别用直觉模糊集构建柯西隶属函数和自适应双通道脉冲发放皮层模型对低频、高频子带进行融合;最后,使用非下采样剪切波变换对融合得到的高低频子带进行逆变换重构得到融合图像.实验结果表明,与其它融合算法相比,该算法有效地增强了弱可见光图像的暗区域,保留了更多的背景信息,从而提高了融合图像的对比度和清晰度. 相似文献
5.
6.
纽扣表面缺陷形态、大小、位置多变,导致缺陷检测成为一个具有挑战性的问题。基于缺陷图像信息空间结构相关性,提出了一种基于低秩信息的纽扣图像重建方法。该方法采用低秩约束缺陷图像矩阵,通过回归的方式重构纽扣表面无缺陷图像,并利用差影法分离带有缺陷信息的残差图像,通过局部加权自适应阈值使缺陷有效显现。所提方法将最小化残差矩阵的秩转化为最小化核范数,并通过交替方向乘子法求解回归系数,利用正样本实现图像重建。针对构建的纽扣样本测试集对算法性能进行测试,证明所提方法对于不同类别的纽扣和不同大小、形状的缺陷都是有效的,算法准确率达99%,并且该方法对于光照变化也具有一定的适应性。 相似文献
7.
提出一种Tetrolet框架下基于联合稀疏表示结合改进脉冲耦合神经网络规则的红外与可见光图像融合方法.对源红外与可见光图像进行不考虑旋转和反射情况下的Tetrolet系数分解;采用联合稀疏方法进行低频系数融合,通过学习字典进行低频系数的精确拟合并融合.在高频子带系数融合上,采用改进脉冲耦合神经网络设置相应的融合规则,根据神经元的点火次数来选择融合图像的高频系数;并对处理后的高低频系数值进行Tetrolet逆变换获取最终融合结果.结果表明,该方法能够有效保留待融合图像的边缘与细节特征,融合结果具有良好的视觉效果,能够增强观察者对于场景的感知和重要目标的识别能力.在互信息、梯度信息、结构相似度以及视觉敏感度指标上都优于传统变换域融合方法,尤其在结构相似度以及梯度保持度上分别领先0.033和0.025,具有有效性. 相似文献
8.
9.
为了充分利用源图像重要特征,提出了一种基于迭代导向滤波与多视觉权重信息的红外与可见光图像融合算法.首先,通过一种迭代导向滤波器将输入图像分解为基础层与细节层;其次,利用边角信息、清晰度与对比度来综合确定二进制权重系数,再选择导向滤波对其优化,进一步去除噪声并抑制伪影的产生;最后,应用重构准则对基础层与细节层进行组合,得到融合图像.实验结果表明,与其它多尺度分解相比,该方法具有尺度感知特性,可以更好地分离空间重叠的特征,不仅可以使夜视融合图像的细节信息更突出,还能够有效地抑制伪影. 相似文献
10.
11.
Existing fusion rules focus on retaining detailed information in the source image, but as the thermal radiation information in infrared images is mainly characterized by pixel intensity, these fusion rules are likely to result in reduced saliency of the target in the fused image. To address this problem, we propose an infrared and visible image fusion model based on significant target enhancement, aiming to inject thermal targets from infrared images into visible images to enhance target saliency while retaining important details in visible images. First, the source image is decomposed with multi-level Gaussian curvature filtering to obtain background information with high spatial resolution. Second, the large-scale layers are fused using ResNet50 and maximizing weights based on the average operator to improve detail retention. Finally, the base layers are fused by incorporating a new salient target detection method. The subjective and objective experimental results on TNO and MSRS datasets demonstrate that our method achieves better results compared to other traditional and deep learning-based methods. 相似文献
12.
针对红外偏振与光强图像彼此包含共同信息和特有信息的特点,提出了一种基于双树复小波变换和稀疏表示的图像融合方法.首先,利用双树复小波变换获取源图像的高频和低频成分,并用绝对值最大值法获得融合的高频成分;然后,用低频成分组成联合矩阵,并使用K-奇异值分解法训练该矩阵的冗余字典,根据该字典求出各个低频成分的稀疏系数,通过稀疏系数中非零值的位置信息判断共有信息和特有信息,并分别使用相应的规则进行融合;最后,将融合的高低频系数经过双树复小波反变换得到融合图像.实验结果表明,本文提出的融合算法不仅能较好地凸显源图像的共有信息,而且能很好地保留它们的特有信息,同时,融合图像具有较高的对比度和细节信息. 相似文献
13.
针对水下光学图像颜色失真、非均匀光照、对比度低的问题,提出基于优势特征图像融合的水下光学图像增强算法.首先,提出改进的暗通道先验算法去除退化图像中的不均匀浑浊并均衡色彩;其次,对颜色校正图像分别使用基于加权分布的自适应伽玛校正算法和限制对比度自适应直方图均衡-同态滤波算法,增强颜色校正图像对比度并使其亮度均衡;最后,定义三幅融合图像即颜色校正图像、亮度均衡图像、对比度增强图像的关联权重图,通过多尺度融合算法获得融合图像.与单一预处理算法只能解决对应的退化现象相比,该算法对单幅退化图像进行多算法处理,得到三幅优势特征图像,通过不同权重的组合最大程度地将各优势特征相结合,得到的综合效果远超各单一算法优化效果,不再局限于解决颜色失真等单一问题.将本文算法与现有算法在主观评价和客观评价两方面进行实验对比,结果表明,该算法可以有效平衡水下图像的色度、饱和度及清晰度,视觉效果接近自然场景下的图像. 相似文献
14.
提出一种多算法融合的图像增强方法,用于工程应用中的复杂降质图像的细节特征恢复.该方法汲取了Laplacian变换法、Sobel梯度法、盒状滤波法、非锐化掩蔽法及灰度幂律法等算法的优点,可对模糊图像进行自适应增强.通过拉普拉斯滤波器和梯度滤波器将原始图像分为基础层、细节层及边缘特征层;对微小细节信息及边缘特征信息进行增强,对基础信息进行压缩;然后采用盒装滤波器对图像的三个分层进行平滑过度及噪音过滤,最后使用非锐化掩蔽法和灰度变换来增加图像灰度的动态范围,从而得到增强后的图像.在相同的工况下,该方法分别与直方图均衡法、自适应伽马矫正法及小波变换的图像增强法实验结果进行对比,结果表明,该方法将图像的清晰度提高了13.1%~126.1%,能有效地处理复杂型感染的图像,避免图像过度增强,可以获得适合人眼的最佳视觉细节内容的增强效果. 相似文献
15.
为了提高全色图像与多光谱图像的融合质量,提出一种基于非下采样双树复轮廓波变换和稀疏表示的图像融合算法.对多光谱图像进行亮度-色度-饱和度变换,再对亮度分量和全色图像进行直方图匹配及亮度平滑滤波处理.利用非下采样双树复轮廓波变换处理亮度分量和全色图像,得到对应的高低频系数.对于低频系数,利用稀疏表示进行融合,采用空间频率和l1范数双指标取大的融合规则得到稀疏表示系数;对于高频系数,将改进的拉普拉斯能量和作为脉冲耦合神经网络的外部输入项,提出了改进的脉冲耦合神经网络的融合策略.最后进行非下采样双树复轮廓波逆变换和亮度-色度-饱和度逆变换得到融合结果.实验结果表明,该算法最大限度地保留光谱信息的同时可以提高空间分辨率,视觉效果及客观指标均优于经典的融合算法. 相似文献
16.
自适应参考图像的可见光与热红外彩色图像融合算法 总被引:1,自引:0,他引:1
可见光与红外热图像的彩色图像融合技术是现今国内外高性能夜视技术发展的重要方向之一,该技术有效提高了人们对目标的探测和场景理解能力。目前常用的色彩传递算法多属于基于单幅参考图像的全局色彩传递算法,彩色融合图像的色调受到参考图像的影响较大,在实际应用中难以保证对各类场景的适应性。针对常规YUV空间色彩传递彩色图像融合算法的环境适应性问题,通过对植物、城镇和海天三类典型场景的分类与统计,发现了典型场景在UV通道的均值和标准差具有的较为明显的分类特性,由此提出了一种基于UV通道均值和标准差的自适应参考图像构造方法,使得可见光与热红外彩色图像融合算法具有较常规算法更好的环境适应性,融合图像的色彩具有较好的自然感,且算法处理量较小,对现有实时硬件融合处理算法的运算速度影响不大,是一种环境适应性强的自然感彩色融合处理算法。 相似文献
17.
基于Tetrolet变换的红外与可见光融合 总被引:3,自引:0,他引:3
针对目前红外与可见光图像融合速度慢、 融合结果对比度不高且易产生伪影的缺点,提出一种基于Tetrolet变换的改进融合算法。首先,将可见光图像转换到lαβ颜色空间得到三个几乎不相关的彩色通道;然后对其l分量和红外图像分别进行Tetrolet变换,对于低通系数引入邻域能量及其接近度的融合规则。而对Tetrolet系数采用伪随机傅里叶矩阵进行观测并加权融合其观测值;接下来对融合后观测值采用CoSaMP优化算法迭代出融合后的Tetrolet系数,并经Tetrolet重构得到融合后的灰度图像;最后将灰度图像映射到RGB颜色空间获得最终的融合图像。实验证明了本文算法的有效性。 相似文献
18.
19.