首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 638 毫秒
1.
Synthetic peptides that specifically bind nuclear hormone receptors offer an alternative approach to small molecules for the modulation of receptor signaling and subsequent gene expression. Here we describe the design of a series of novel stapled peptides that bind the coactivator peptide site of estrogen receptors. Using a number of biophysical techniques, including crystal structure analysis of receptor-stapled peptide complexes, we describe in detail the molecular interactions and demonstrate that all-hydrocarbon staples modulate molecular recognition events. The findings have implications for the design of stapled peptides in general.  相似文献   

2.
Heterocycles display common structural motifs in nonribosomally produced peptides with an enormous impact on their bioactivity. In the case of the branched cyclic Bacitracin A, the thiazoline moiety is manufactured during NRPS peptide chain elongation. Here we describe a method to selectively alter the heterocyclic metal binding subunit of Bacitracin A by the synthesis of heterocyclic building blocks that were successfully coupled to the linear decapeptide and subsequently cyclized using the excised bacitracin PCP-TE bidomain. Utilization of this cyclase allowed the first generation of branched cyclic bacitracin derivatives containing thiazole and oxazoles. The generated bacitracin derivatives showed bactericidal activity, indicating the possibility of altering the biological important heterocyclic subunit and overcoming existing limitations for the application of bacitracin.  相似文献   

3.
Residual dipolar coupling constants (RDCs) are being increasingly applied to elucidate the configuration and conformation of small organic molecules, peptides and oligosaccharides. In this paper we describe a set of robust 1D NMR methods for accurate and precise measurement of proton-proton RDCs of small and medium size molecules. The performance of these techniques is not impeded by the presence of overlapping and broad (1)H multiplets that are typically observed for such molecules in weakly aligned media. The use of these techniques provides access to a large pool of proton-proton RDCs opening new avenues for the solution structure elucidation of medium size molecules by NMR. The techniques are illustrated on the determination of the alignment tensor of the reducing monosaccharide ring of cellobiose and the determination of the relative configuration of sodium cholate.  相似文献   

4.
Fluorescent labelling of peptides is necessary in a wide range of cell biological applications. In the last decade, the application of cell-penetrating molecules has been advanced by the use of peptides, which have proven efficient in aiding nonpermeant molecules to cross the cell membrane. Currently, the development of new cell-penetrating peptides based on the design and synthesis of labelled peptide libraries is becoming critically important. Here we report an improved method for the solid-phase labelling of peptides, mediated by the activation of 5(6)-carboxyfluorescein with PyAOP/ HOAt.  相似文献   

5.
The capacity to create an increasing variety of bioactive molecules that are designed to assemble in specific configurations has opened up tremendous possibilities in the design of materials with an unprecedented level of control and functionality. A particular challenge involves guiding such self-assembling interactions across scales, thus precisely positioning individual molecules within well-organized, highly-ordered structures. Such hierarchical control is essential if peptides and proteins are to serve as both structural and functional building blocks of biomedical materials. To achieve this goal, top-down techniques are increasingly being used in combination with self-assembling systems to reproducibly manipulate, localize, orient and assemble peptides and proteins to form organized structures. In this tutorial review we provide insight into how both standard and novel top-down techniques are being used in combination with peptide or protein self-assembly to create a new generation of functional materials.  相似文献   

6.
Natural peptides are an important class of chemical mediators, essential for most vital processes. What limits the potential of the use of peptides as drugs is their low bioavailability and enzymatic degradation in vivo. To overcome this limitation, the development of new molecules mimicking peptides is of great importance for the development of new biologically active molecules. Therefore, replacing the amide bond in a peptide with a heterocyclic bioisostere, such as the 1,2,3-triazole ring, can be considered an effective solution for the synthesis of biologically relevant peptidomimetics. These 1,2,3-triazoles may have an interesting biological activity, because they behave as rigid link units, which can mimic the electronic properties of amide bonds and show bioisosteric effects. Additionally, triazole can be used as a linker moiety to link peptides to other functional groups.  相似文献   

7.
Branched peptides as therapeutics   总被引:1,自引:0,他引:1  
The concept of 'magic bullet', initially ascribed to immunoglobulins by Paul Ehrlich at the beginning of the 20th century and strengthened by the hybridoma technology of Kohler and Milstein in the mid 70s, can nowadays be attributed to different target-specific molecules, such as peptides. This attribution is increasingly valid in light of the explosion of new technologies for peptide library construction and screening, not to mention improvements in peptide synthesis and conjugation and in-vivo peptide stability, which make peptide molecules specific bullets for targeting pathological markers and pathogens. Today, hundreds of peptides are being developed and dozens are in clinical trials for a variety of diseases, demonstrating that the general reluctance towards peptide drugs that existed a decade ago has now been overcome. In spite of this progress, the development of new peptide drugs has largely been limited by their short half-life. Branched peptides such as Multiple Antigen Peptides (MAPs) were invented in the 80s by Tam [Tam, J.P., (1998) Proc. Natl. Acad. Sci. USA, 85, 5409] and have been extensively tested to reproduce single epitopes to stimulate the immune system for new vaccine discovery. In our lab we discovered that MAP molecules acquire strong resistance to proteases and peptidases. This resistance renders MAPs very stable and thus suitable for drug development. Here we report our experience with several MAP molecules in different biotechnological applications ranging from antimicrobial and anti toxin peptides to peptides for tumor targeting.  相似文献   

8.
Many analytical approaches are available to evaluate (bio)molecular interactions, all of which have their particular advantages and disadvantages. In recent years, two relatively new techniques have emerged that may be used by the bioanalytical community to evaluate such interactions, namely affinity capillary electrophoresis (ACE) and bioaffinity electrospray ionization-mass spectrometry (ESI-MS). In this paper, we describe and evaluate the use of both these techniques for the investigation of the interactions of glycopeptide antibiotics with peptides that mimic the bacterial cell wall binding site. We focus particularly on the effect of the sugar moieties attached to the antibiotic peptide backbone and on the noncovalent dimerization of these glycopeptide antibiotics.  相似文献   

9.
We demonstrate both theoretically and experimentally that the combination of vibrational spectroscopic techniques on samples can be used to deduce more detailed structural information of interfacial proteins and peptides. Such an approach can be used to elucidate structures of proteins or peptides at interfaces, such as at the solid/liquid interface or in cell membranes. We also discuss that the controlled perturbations may provide more measured parameters for structural studies on such proteins and peptides. In this paper, we will demonstrate that optical spectroscopic techniques such as polarized Fourier transform infrared spectroscopy (FTIR), sum frequency generation (SFG) vibrational spectroscopy, and higher order nonlinear vibrational spectroscopies can be used to deduce different and complementary structural information of molecules at interfaces (e.g., orientation information of certain functional groups and secondary structures of interfacial proteins). Also, we believe that controlled perturbations on samples, such as variation of sample temperature, application of electrical fields, and alternation of substrate roughness, can provide more detailed information regarding the interfacial structures of proteins and peptides. The development of nonlinear vibrational spectroscopies, such as SFG and four-wave mixing vibrational spectroscopy, to examine interfacial protein and peptide structures, and introduction of external perturbations on samples should be able to substantially advance our knowledge in understanding structures and thus functions of proteins and peptides at interfaces.  相似文献   

10.
There is a great demand for the discovery of new therapeutic molecules that combine the high specificity and affinity of biologic drugs with the bioavailability and lower cost of small molecules. Small, natural-product-like peptides hold great promise in bridging this gap; however, access to libraries of these compounds has been a limitation. Since ribosomal peptides may be subjected to in vitro selection techniques, the generation of extremely large libraries (>10(13)) of highly modified macrocyclic peptides may provide a powerful alternative for the generation and selection of new useful bioactive molecules. Moreover, the incorporation of many non-proteinogenic amino acids into ribosomal peptides in conjunction with macrocyclization should enhance the drug-like features of these libraries. Here we show that mRNA-display, a technique that allows the in vitro selection of peptides, can be applied to the evolution of macrocyclic peptides that contain a majority of unnatural amino acids. We describe the isolation and characterization of two such unnatural cyclic peptides that bind the protease thrombin with low nanomolar affinity, and we show that the unnatural residues in these peptides are essential for the observed high-affinity binding. We demonstrate that the selected peptides are tight-binding inhibitors of thrombin, with K(i)(app) values in the low nanomolar range. The ability to evolve highly modified macrocyclic peptides in the laboratory is the first crucial step toward the facile generation of useful molecular reagents and therapeutic lead molecules that combine the advantageous features of biologics with those of small-molecule drugs.  相似文献   

11.
We describe a rationally designed peptide with tunable surface activity, where the dynamics of surface activity are an outcome of helical folding. Our rationally designed model peptide is surface-active only as an alpha-helix. We apply circular dichroism to show that the folded population can be controlled with changes in electrolyte concentration, and we apply pendant bubble tensiometry to explore dynamic surfactant activity. This study shows a peptide that responds to environmental stimuli with dynamic folding and surface activity. Extending this concept to selective binding peptides will lead to new tools, where dynamic surface activity is coupled to targeted binding.  相似文献   

12.
Molecular docking explores the binding modes of two interacting molecules. The technique is increasingly popular for studying protein-ligand interactions and for drug design. A fundamental problem problem with molecular docking is that orientation space is very large and grows combinatorially with the number of degrees of freedom of the interacting molecules. Here, we describe and evaluate algorithms that improve the efficiency and accuracy of a shape-based docking method. We use molecular organization and sampling techniques to remove the exponential time dependence on molecular size in docking calculations. The new techniques allow us to study systems that were prohibitively large for the original method. The new algorithms are tested in 10 different protein-ligand systems, including 7 systems where the ligand is itself a protein. In all cases, the new algorithms successfully reproduce the experimentally determined configurations of the ligand in the protein.  相似文献   

13.
14.
Peptide surfactants are a kind of newly emerged functional materials, which have a variety of applications such as building nanoarchitecture, stabilizing membrane proteins and controlling drug release. In the present study, we report the modelling and prediction of critical aggregation concentration (CAC), an important parameter that characterizes the self-assembling behaviour of peptide surfactants through the use of statistical modelling and quantitative structure–property relationship (QSPR) approaches. In order to accurately describe the structural and physicochemical properties of the highly flexible peptide molecules, a new method called molecular dynamics-based hydrophobic cross-field (MD-HCF) is proposed to capture both the hydrophobic profile and dynamic feature of 32 surface-activity, structure-known peptides. A number of statistical models are then developed using partial least squares (PLS) regression with or without improvement by genetic algorithm (GA). We demonstrate that MD-HCF performs much better than the widely used CODESSA method in both its predictability and interpretability. We also highlight the importance of dynamic hydrophobic property in accurate prediction and reasonable explanation of peptide self-assembling behaviour in solution, albeit which is exhaustive to compute compared with those derived directly from peptide static structure. To the best of our knowledge, this study is the first to computationally model and predict the self-assembling behaviour of peptide surfactants.  相似文献   

15.
Currently, the clinical application of protein/peptide therapeutics is mainly limited to the modulation of diseases in extracellular spaces. Intracellular targets are hardly accessed, owing largely to the endosomal entrapment of internalized proteins/peptides. Here, we report a strategy to design and construct peptides that enable endosome-to-cytosol delivery based on an extension of the “histidine switch” principle. By substituting the Arg/Lys residues in cationic cell-penetrating peptides (CPPs) with histidine, we obtained peptides with pH-dependent membrane-perturbation activity. These peptides do not randomly penetrate cells like CPPs, but imitate the endosomal escape of CPPs following cellular uptake. Working with one such 16-residue peptide (hsLMWP) with high endosomal escape capacity, we engineered modular fusion proteins and achieved antibody-targeted delivery of diverse protein cargoes—including the pro-apoptotic protein BID (BH3-interacting domain death agonist) and Cre recombinase—into the cytosol of multiple cancer cell types. After extensive in vitro testing, an in vivo analysis with xenograft mice ultimately demonstrated that a trastuzumab-hsLMWP-BID fusion conferred strong anti-tumor efficacy without apparent side effects. Notably, our fusion protein features a modular design, allowing flexible applications for any antibody/cargo combination of choice. Therefore, the potential applications extend throughout life science and biomedicine, including gene editing, cancer treatment, and immunotherapy.  相似文献   

16.
Cyclisation and cross-linking strategies are important for the synthesis of cyclic and bicyclic peptides. These macrolactams are of great interest due to their increased biological activity compared to linear analogues. Herein, we describe the synthesis of a cyclic peptide containing an Hpi toxicophore, reminiscent of phakellistatins and omphalotins. The first intraannular cross-linking of such a peptide is then presented: using neat TFA to catalyse a Savige-Fontana tryptathionylation, the Hpi-containing peptide is converted to a bicyclic amatoxin analogue. As such, this methodology represents an efficient cyclisation method for cross-linking peptides and exposes a heretofore unrealised relationship between two different classes of peptide natural products. This finding increases the degree of potential chemical space for library generation.  相似文献   

17.
Journal of Computer-Aided Molecular Design - Exploring the origin of multi-target activity of small molecules and designing new multi-target compounds are highly topical issues in pharmaceutical...  相似文献   

18.
寡肽结构参数化及定量构效关系研究   总被引:6,自引:0,他引:6  
林治华  刘树深  李志良 《化学学报》2001,59(7):1001-1008
从肽链的一级结构出发,基于分子中原子间距离及各原子的电负性,构建了能描述二肽与多肽分子的结构参数分子电负性边数矢量,简称分子电边矢量。据此,对58个血管紧张素转化酶抑制剂(二肽)及48个苦味二肽已知活性进行了定量结构活性相关研究,为考察分子电边矢量的实用性,还对血管舒缓激肽增效剂(五肽)已知活性进行了研究。结果表明:与其它表达方法相比,本研究的分子电边矢量具有计算简便,活性相关性好的特点,可望在生物分子的结构表征及活性预测方面有所作为。  相似文献   

19.
C-Terminal peptide thioesters are key intermediates in the synthesis/semisynthesis of proteins and of cyclic peptides by native chemical ligation. They are prepared by solid-phase peptide synthesis (SPPS) or biosynthetically by protein splicing techniques. Until recently, the chemical synthesis of C-terminal alpha-thioester peptides by SPPS was largely restricted to the use of Boc/Benzyl chemistry due to the poor stability of the thioester bond to the basic conditions required for the deprotection of the N(alpha)-Fmoc group. In the present work, we describe a new method for the SPPS of C-terminal thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. This step converts the acyl hydrazine group into a highly reactive acyl diazene intermediate which reacts with an alpha-amino acid alkyl thioester (H-AA-SR) to yield the corresponding peptide alpha-thioester in good yield. This method has been successfully used to prepare a variety of peptide thioesters, cyclic peptides, and a fully functional Src homology 3 (SH3) protein domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号