首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The efficiency of different sensitizers for photodynamic therapy (PDT) was tested using a model system with a C3H mammary carcinoma growing subcutaneously on the dorsal side of mouse feet. Growth curves were constructed from which growth delay and doubling time in the regrowth phase were calculated. As PDT induced oedema in the mouse foot, this model system also allowed assessment of normal tissue response.
The following sensitizers were tested: hematoporphyrin derivative (HpD), Photofrin II (PII), tetraphenylporphinetetrasulfonate (TPPS4), acridine orange (AO), phthalocyanine tetrasulfonate (PCTS), Al- and Zn-phthalocyanine tetrasulfonate (A1PCTS and ZnPCTS). For tumor control, the following sensitizer efficiencies were found: PII > HpD > AIPCTS > TPPS4 >>> ZnPCTS, PCTS, AO. With regard to sensitizing normal-tissue damage: PII > AIPCTS, TPPS4 > HpD, ZnPCTS, PCTS. The results suggest that AIPCTS should be further evaluated for use in PDT.  相似文献   

2.
Abstract— Two new sensitizers are introduced for a potential use in photodynamic therapy: Zn2+- and MG2+-tetrabenzoporphyrin (ZnTBP and MgTBP). A comparative study of the quantum yields of singlet oxygen generation (ΦΔ) of hematoporphyrin derivative (HpD), Photofrin II (PF-II), Zn2+-phthalocyanine tetrahydroxyl [ZnPC(OH)4] and the newly introduced sensitizers ZnTBP and MgTBP in liposomes, as well as the kinetics of a photochemical reaction sensitized by them, was made by employing the fluorescent membrane probe 9,10-dimethylanthracene (DMA). We followed the photosensitization of DMA in real time by monitoring its fluorescence decrease at 457 nm and found that DMA's photosensitization is oxygen mediated. The kinetic traces of the photosensitization reactions were fitted to an analytical function, and the ΦΔ values were evaluated. At 10 μ M sensitizer in an aqueous suspension of 2 mg/mL egg phosphatidylcholine (EPC), HpD was found to have the largest value of ΦΔ (0.215), followed by PF-II (0.191), ZnTBP (0.023), MgTBP (0.019) and ZnPC(OH)4 (0.005). As a test of the method, ΦΔ for methylene blue in ethanol was measured and found to be 0.45 as compared to 0.52 reported in the literature. Due to difference in the sensitizers' absorbances at the laser's wavelength, the reaction photosensitized by ZnTBP was the fastest with a time constant of 6.7 min, followed by MgTBP (8.7), PF-II (11.9), HpD (17.1) and ZnPC(OH)4 (31.2), all at equal sensitizers' concentrations and laser intensities. The binding constants of the sensitizers to EPC liposomes are also reported.  相似文献   

3.
Abstract— The photodynamic therapy (PDT) efficiency of five phthalocyanines, chloroaluminum phthalocyanine (AlPc), dichlorosilicon phthalocyanine (SiPc), bis (tri- n -hexylsi-loxy)silicon phthalocyanine (PcHEX), bis (triphenyl-siloxy)silicon phthalocyanine (PcPHE) and nickel phthalocyanine (NiPc), was assessed on two leukemic cell lines TF-1 and erythroieukemic and B lymphoblastic cell lines, Daudi, respectively. AlPc showed the best photocytotox-icity leading to 0.008 surviving fraction at 2 × 10−9 M for TF-1 and 4 × 10−9 M for Daudi. At 5 × 10−7 M , SiPc and PcHEX induced a significant photokilling, whereas NiPc and PcPHE were inactive. Laser flash photolysis and photoredox properties of the phthalocyanines were investigated to try to relate these parameters with the biological effects. AlPc showed the longest triplet lifetime: 484 fis in dimethyl sulfoxide/H2O. This value was increased up to 820 u.s when AlPc was complexed with human serum albumin used as a membrane model. Such an enhancement was not observed with the silicon phthalocyanines. Upon irradiation, all the phthalocyanines generated singlet oxygen with 0.29–0.37 quantum yield values. The reduction potentials of the excited states obtained from measurement in the ground state and energy of the excited triplets show that AlPc is the best electron acceptor. The in vitro photocytotoxicity observed and the measured parameters are in agreement with a key role of electron transfer in PDT assays involving these phthalocyanines.  相似文献   

4.
Photooxygenation reaction of an unsaturated fatty acid ester, methyl linoleate (methyl 9- cis. 12- cis -octadecadienoate, ML-H), sensitized by porphyrins and several types of dyes has been studied in aqueous emulsion and acetonitrile solution under air at 40°C. The oxygen (O2) uptake proceeded slowly in the absence of sensitizers upon irradiation of an aqueous emulsion and an acetonitrile solution of ML-H (20 m M ) at ℷex > 290 nm (11.4 and 6.1 μmol h-1, respectively). The rate of O2 uptake was enhanced by a catalytic amount (0.1 m M ) of porphyrins and dyes; hematoporphyrin (HP), zinc tetrakis(N-methyl-4-pyridiniumyi)porphyrin (ZnTMPyP), methylene blue (MB), rose bengal (RB), acridine orange (AO), and acriflavine (AF). In both systems, the sensitized photooxidation of ML-H by O2 proceeded equimolarly to produce isomeric mixture of C9 and C13 hydroperoxides having the trans,cis and trans,trans conjugated diene configurations, independent of the types of the sensitizers used. The yield ratio of trans,trans/ trans,cis products in the MB-sensitized photooxygenation in acetonitrile and aqueous emulsion were almost equal (0.32 and 0.35. respectively). The sensitizing activity of the sensitizers, as measured by the quantum yield of O2 uptake, increased in the order: MB (≃ 0) < ZnTMPyP < RB < HP < AF < AO in the aqueous emulsion and AO < AF < HP < RB = MB in the acetonitrile solution. The order in homogeneous acetonitrile solution was interpreted by the sensitizing ability of the dyes to produce singlet oxygen, while that in heterogeneous aqueous emulsion was correlated to the lipophilicity of dyes as well as the singlet-oxygen-producing ability.  相似文献   

5.
Abstract— -Three phthalocyanine dyes HOSiPcOSi(CH3)2(CH2)3N(CH3)2 (Pc 4), HOSiPc-OSi(CH3)2(CH2)3N+(CH3)3I- (Pc 5) and aluminum tetrasulfophthalocyanine hydroxide (AlOHPcS4) were evaluated for their ability to inactivate the trypomastigote form of Trypanosoma cruzi in fresh frozen plasma (FFP) and red blood cell concentrates (RBCC). The compound Pc 4 was found to be highly effective in killing T. cruzi, Pc 5 less effective and AlOHPcS4 ineffective. With FFP as the medium, a complete loss of parasite infectivity in vitro (≥5 log10) was found to occur with 2 μ M Pc 4 after irradiation with red light (>600 nm) at a fiuence of 7.5 J/cm2, while with RBCC as the medium, a complete loss was found to occur at a fiuence of 15 J/cm2. Even without illumination, Pc 4 at 2 μ M also killed about 3.7-4.1 log10 of T. cruzi in FFP during 30 min. Observed differences in T. cruzi killing by the various phthalocyanines may relate to differences in binding; Pc 4 binds to the parasites about twice as much as Pc 5. Ultrastructural analysis of treated parasites suggests that mitochondria are a primary target of this photodynamic treatment. The data indicate that Pc 4 combined with exposure to red light could be used to eliminate bloodborne T. cruzi parasites from blood components intended for transfusion. The inactivation of T. cruzi by Pc 4 in the dark suggests a possible therapeutic application.  相似文献   

6.
Abstract— The quantum yield of the photodynamic inactivation of lysozyme increases in the sequence acridine orange, methylene blue, proflavine and acriflavine (1:5:6:12). At least up to protein concentrations of 0.1 m M , singlet oxygen is exclusively responsible for the inactivation of the enzyme. For methylene blue, acriflavine and proflavine the quantum yields decrease considerably with increasing dye concentrations. From measurements in H2O and D2O buffer solutions it was concluded that in the case of methylene blue the effect is mainly caused by the quenching of singlet oxygen [rate constant (3–4) × 108 M −1 s−1]. For the acridine sensitizers both singlet oxygen and dye triplet quenching processes have to be taken into consideration. It has been found that all sensitizers act as competitive inhibitors of the enzymatic reaction of lysozyme. However, the dye-protein interaction near the active center cannot be responsible for the observed dye self-quenching effect.  相似文献   

7.
Abstract— The photogeneration of singlet oxygen (1O2) from thylakoids and the chromophores involved as endogenous sensitizers were investigated using chloroplasts and thylakoids isolated from spinach. The blue light-induced inhibition kinetics of photosynthetic electron transport and that of CTvCF, ATPase were also studied. The spectral dependence of the generation of 1O2 from thylakoid membranes, measured by the imidazole plus RNO method, clearly demonstrated that the Fe-S centers play an important role in 1O2 generation, acting as sensitizers in thylakoids. The photoinhibition of the electron transport in isolated chloroplasts was strikingly depressed by a lipid-soluble '02 quencher and enhanced by deuterium oxide substitution, indicating that the inhibition processes are mainly mediated by 1O2 which is produced via photodynamic activation. The involvement of chloroplast cytochromes in the production of 1O2 was deduced from the action spectrum for the photodynamic inhibition of the electron carrier chain. The results obtained from the kinetic studies appear consistent with the involvement of some components such as the Fe-S centers and cytochrome chromophores of the carrier chain in the generation of 1O2.  相似文献   

8.
Abstract— Phthalocyanines are being studied as photosensitizers for virus sterilization of red blood cells (RBC). During optimization of the reaction conditions, we observed a marked effect of the irradiance on production of RBC damage. Using a broad-band light source (600–700 nm) between 5 and 80 mW/ cm2, there was an inverse relationship between irradiance and rate of photohemolysis. This effect was observed with aluminum sulfonated phthalocyanine (AlPcSn) and cationic silicon (HOSiPc-OSi[CH3]2 [CH2]3N+[CH3]3I- phthalocyanine (Pc5) photosensitizers. The same effect occurred when the reduction of RBC negative surface charges was used as an endpoint. Under the same treatment conditions, vesicular stomatitis virus inactivation rate was unaffected by changes in the irradiance. Reduction in oxygen availability for the photochemical reaction at high irradiance could explain the effect. However, theoretical estimates suggest that oxygen depletion is minimal under our conditions. In addition, because the rate of photohemolysis at 80 mW/cm2 was not increased when irradiations were carried out under an oxygen atmosphere this seems unlikely. Likewise, formation of singlet oxygen dimoles at high irradiances does not appear to be involved because the effect was unchanged when light exposure was in D2O. While there is no ready explanation for this irradiance effect, it could be used to increase the safety margin of RBC virucidal treatment by employing exposure at high irradiance, thus minimizing the damage to RBC.  相似文献   

9.
Abstract— A comparative study was carried out on the in situ susceptibilities to photoinactivation of the photosystem I (PS I) and II (PS II) complexes of spinach thylakoids treated with efficient type II sensitizers. While the presence of the exogenous sensitizers caused a substantial increase in the extent of photoinactivation of whole chain electron transport, it did not affect PS I activity of thylakoids in light but exerted an enhanced photoinactivating effect only on PS II. The measurements of the action spectrum for the inhibition of PS II activity of the sensitizer-incorporated thylakoids and that for the generation of singlet oxygen (1O2) from them revealed that photosensitized inactivation of PS II is directly related to the photoproduction of 1O2 in thylakoid membranes. The results obtained in the present work clearly demonstrate an exceptional sensitivity of PS II to 1O2, providing circumstantial evidence that high light-induced damage to PS II may result from photosensitization reactions mediated by 1O2, which is not necessarily produced within the PS II complex.  相似文献   

10.
Abstract— The purpose of the study was to determine if aluminum phthalocyanine tetrasulfonate (A1PcS4) photodynamic therapy (PDT) induced the formation of micronuclei in vitro and whether micronuclei formation was dependent on fiuence or cell type. NIH-3T3 and EMT-6 monolayer cultures were incubated in AlPcS4 (0 or 1 μg/mL) for 24 h, received 0.0, 0.5,1.0 or 1.5 J/cm 2 of 675 nm light, then reincubated and harvested at either 24, 48 or 72 h. The micronucleus frequency was determined in binucleated cells using the cytochalasin-block method. Cytotoxicity was assessed by using the 3(4,5-dimenthylthiazoyl-2-yl)2,5(diphenyl-tetrazolium bromide) (MTT) method. The effect of treatment on cell cycle progression was determined by calculating a proliferative index.
Aluminum phthalocyanine tetrasulfonate PDT induced a fluence-dependent increase in the frequency of micro-nuclei in NIH-3T3 and EMT-6 cells. The maximal effect of PDT was obtained in both cell lines 24 h after treatment. NIH-3T3 and EMT-6 cells exposed to a low fiuence of 0.5 J/cm2 had a significantly lower number of micro-nuclei per cell 48 h following PDT treatment compared to the number of micronuclei per cell observed 24 h following treatment; however, when cells were exposed to a fluence (1.0 or 1.5 J/cm2) the number of micronuclei per cell did not diminish until 72 h after PDT treatment. The results obtained from the micronucleus assay paralleled those results obtained from the MTT assay.  相似文献   

11.
Abstract— The rate constant for quenching of 1O2 by azide ion in water was determined to be (5.0 ± 0.4) × 108 M −1 s−1 using a variety of sensitizers (including humic acids) and 1O2 acceptors. The apparent second-order rate constant decreases with pH below pH 5.5 in accordance with the protonation of azide ion to form hydrazoic acid (p K a= 4.6). Quenching by hydrazoic acid is at least 2 orders of magnitude slower than by azide ion. Greater than 99% of all interactions between 1O2 and azide ion involve physical quenching rather than chemical reaction. Humic acid triplets are not significantly quenched by azide ion at concentrations less than 2 m M , allowing azide ion quenching to be used as a diagnostic test for the intermediacy of 1O2 in photosensitized oxidations in natural surface waters.  相似文献   

12.
Abstract— The kinetic properties of O2(1Δg) have been examined in unilamellar vesicle dispersions composed of didodecyldimethylammonium bromide, di- n -octadecyl phosphate and egg lecithin. Light absorbing sensitizers 2-acetonaphthone, methylene blue and a methylene blue derivative of enhanced water-solubility were used. The rate parameters for singlet oxygen were monitored by observing the time profile of the bleaching of the reactive substrates diphenylisobenzofuran and anthracene dipropionate. The natural lifetime of O2(1Δg) in D2O-based suspensions was shown to be 46/JS in good agreement with that found earlier for D2O alone and D2O-based micelle systems. The bimolecular rate constants for reaction with diphenylisobenzofuran and dimethylindole (both lipid-bound) and histidine (water-bound) were also in close conformity with the values found earlier in micellar media. Kinetic spectrophotometry has been shown to be a useful technique for examining rate parameters in these heterogeneous media.  相似文献   

13.
Abstract— Zn(II)phthalocyanine (ZnPc) generates O2(1Δg) with a quantum yield of ca. 0.4 upon photocxcitation at 354 or 600 nm in ethanolic solution as determined by time-resolved phosphorescence studies at 1270 nm and photooxidation experiments using 1,3-diphenylisobenzofuran (DPBF) as substrate. The quantum yield of photooxidation slightly increases upon incorporation of ZnPc into unilamellar liposomes of dipalmitoylphosphatidylcholine. Under our irradiation conditions (600 nm, 18°C, and short light exposure times), DPBF(5–50 μM) undergoes photooxidation by a pure Type II mechanism; the rate constant for the O2(1Δg) + DPBF reaction is (1.1 ±0.1) x 109 M-1 s_1 in ethanol solution and determined to be about two orders of magnitude smaller when both ZnPc and DPBF are embedded into liposomes.  相似文献   

14.
Zinc phthalocyanine tetrasulfonate (ZnPcS4), a potential photosensitizer for photodynamic therapy (PDT), has been studied using femtosecond laser spectroscopy. The excited-state dynamics in water have been found to be fast (<80 ps) and dominated by intermolecular aggregation. Since the proposed mechanism for PDT is energy transfer from the triplet excited state of the photosensitizer to triplet O2 creating singlet O2, the short lifetime is expected to be unfavorable for producing singlet O2. This leads to the suggestion that the presence of biological substrates may have an effect on the excited-state dynamics. To test this hypothesis, the lifetimes of the ex-cited states of ZnPcS4 have been directly measured in the presence of a model membrane, n-hexadecyltrimethylammonium bromide (CTAB). The excited-state dynamics of ZnPcS4 in buffer solutions and with human serum albumin (HSA) have also been measured. The presence of HSA and CTAB increases the excited-state lifetime significantly relative to that observed in water. The longer lifetime of ZnPcS4 in CTAB (>1 ns) indicates that the micellar surface favors monomer formation. By increasing the excited-state lifetime, the surface substantially in-creases the photosensitizing potential of ZnPcS4.  相似文献   

15.
Abstract— Photooxidation reactions in ascorbate (AH)-containing erythrocyte membrane suspensions have been studied in broad perspective by simultaneously monitoring lipid peroxidation in the membrane compartment and formation of hydrogen peroxide (H2O2) and hydroxyl radical (OH) in the aqueous compartment. Non-bound uroporphyrin (UP) and membrane-bound protoporphyrin (PP) were used as sensitizers. Photoreduction of UP to the radical anion (UP-) was detected by electron spin resonance when UP/AH/membrane mixtures were irradiated anaerobically. Aerobic irradiation resulted in a strong AH--stimulation of lipid peroxidation, H2O2 formation, and OH- generation (detected with 2-deoxyribose (DOR) and the spin trap 5,5-dimethyl-l-pyrroline-N-oxide). Use of diagnostic agents (e.g. catalase, desferrioxamine, mannitol) revealed that OH- is involved in light-stimulated DOR oxidation, but not in lipid peroxidation. Similar irradiation in the presence of PP resulted in far greater lipid peroxidation than observed with UP, but less DOR oxidation, and insignificant accumulation of H2O2. This suggests that photoreduction of membrane-bound PP is less efficient, possibly due to hindered access of AH-.  相似文献   

16.
Abstract— Most sensitizers used for the photodynamic therapy (PDT) of tumors photobleach on illumination. Thus, it is of interest to examine the photobleaching behavior of new sensitizers proposed for use in PDT. This report surveys the quantum yields and kinetics of the photobleaching of mono- l -aspartyl chlorin e6 (NPe6), a hydrophilic chlorin that has many of the photoproperties desirable in a sensitizer for clinical PDT. It is a very effective sensitizer for the PDT of several types of model tumors in animals and is now in Phase I clinical trials. The quantum yield of NPe6 photobleaching in pH 7.4 phosphate buffer in air was 8.2 × 10−4; this is greater than the yields for typical porphyrin photosensitizers. For example, the yields for hematoporphyrin and uroporphyrin are 4.7 × 10 5 and 2.8 × 10−5, respectively. The yield decreased significantly in organic solvents of low dielectric constant. The Sn derivative of NPe6 was more light stable than NPe6 (yield = 5.7 × 10 −6), while the Zn derivative was more sensitive (yield = 1.9 × 10−2). Oxygen appeared to be necessary for the photobleaching of NPe6; however, bleaching was not inhibited by 100 mM azide, an efficient quencher of singlet oxygen. The photooxidizable substrates cysteine, dithiothreitol and furfuryl alcohol increased the quantum yield of photoblcaching two- to four-fold, while the electron acceptor, met-ronidazole, increased it almost six-fold. Photobleaching yields for several other chlorins were also measured.  相似文献   

17.
Abstract— The photophysical properties of cis -disulfonated aluminum phthalocyanine (AlPcS2) in unilamellar vesicles (liposomes) of DL-a-dipalmitoyl-phosphatidylcholine have been measured. Both the fluorescence and triplet quantum yields decreased with increasing sensitizer concentration. The time-resolved fluorescence decays, analyzed by both the sum of exponentials and decay time distribution analyses, are compared with those reported for AlPcS2 in leukemic K562 cells. Information on the pho-todynamic transport and localization mechanism has been obtained by drawing correlations between the two systems, indicating active transport of the phthalocyanine into tumor cells involving lysosomal accumulation.  相似文献   

18.
Abstract— The rate constant k5/ > for physical quenching of singlet oxygen O21;) by the sensitizer in dye-sensitized photooxygenations is determined in the case of chlorophylls a and b (7.3 times 108, 4.2 times 108 M-1 s-1 respectively), pheophytins a and b (7.4 times 107, 3.0 times 107 M-1 s_1 respectively), tetraphenylporphyrin (4.4 times 107 M-1 s_1), magnesium tetraphenylporphyrin (5.0 times 108 M-1 s_1), zinc tetraphenylporphyrin (1.5 times 108 M-1 s_l) and protoporphyrin IX-dimethylester (9.1 times 107 M -1 s_1) in benzene. These sensitizers show a linear correlation between log ksO , and their half-wave oxidation potentials and the value of the slope is similar to that observed for various compounds such as phenols. It is concluded that (i) the interaction between chlorophylls and related compounds with singlet oxygen may involve an exciplex as for phenols, and (ii) physical quenching may be envisaged as a spin-orbit-induced intersystem crossing within the exciplex.  相似文献   

19.
Axially substituted tin phthalocyanines, namely dichloride-tetra-(α-pentyloxy) tin (Ⅳ) phthalocyanine 2, dihydroxy-tetra-(α-pentyloxy) tin (Ⅳ) phthalocyanine 3 and its dimmer di-μ-oxo-tetra-(α-pentyloxy) tin(Ⅳ) phthalocyanine 4 were synthesized. The catalytic effect of H2O-free CaCl2 in quinoline was used for condensation of dihydroxy tin phthalocyanine 3 to the cofacially array dimmer 4. Their structures were characterized by UV-vis, IR, elemental analysis, MS, as well as ^1HNMR spectroscopy.  相似文献   

20.
The ability to noninvasively measure photosensitizer concentration at target tissues will allow optimization of photodynamic therapy (PDT) and could improve outcome. In this study, we evaluated whether preirradiation tumor phthalocyanine 4 (Pc 4) concentrations, measured noninvasively by the optical pharmacokinetic system (OPS), correlated with tumor response to PDT. Mice bearing human breast cancer xenografts were treated with 2 mg kg−1 Pc 4 iv only, laser irradiation (150 J cm−2) only, Pc 4 followed by fractionated irradiation or Pc 4 followed by continuous irradiation. Laser irradiation treatment was initiated when the tumor to skin ratio of Pc 4 concentration reached a maximum of 2.1 at 48 h after administration. Pc 4 concentrations in tumor, as well as in Intralipid in vitro , decreased monoexponentially with laser fluence. Pc 4-PDT resulted in significant tumor regression, and tumor response was similar in the groups receiving either fractionated or continuous irradiation treatment after Pc 4. Tumor growth delay following Pc 4-PDT correlated with OPS-measured tumor Pc 4 concentrations at 24 h prior to PDT ( R 2 = 0.86). In excised tumors, OPS-measured Pc 4 concentrations were similar to the HPLC-measured concentrations. Thus, OPS measurements of photosensitizer concentrations can be used to assist in the scheduling of Pc 4-PDT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号