首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of reflection and transmission of plane waves incident on the contact surface of an elastic solid and an electro-microstretch generalized thermoelastic solid is discussed. It is found that there exist five reflected waves, i.e., longitudinal displacement (LD) wave, thermal (T) wave, longitudinal microstretch (LM) wave and two coupled transverse displacement and microrotational (CD(I) and CD(II)) waves in the electro-microstretch generalized thermoelastic solid, and two transmitted waves, i.e., longitudinal (P) and transverse (SV) waves in the elastic solid. The amplitude ratios of different reflected and transmitted waves are obtained for an imperfect boundary and deduced for normal force stiffness, transverse force stiffness, and perfect bonding. The variations of amplitude ratios with incidence angles have been depicted graphically for the LD wave and the CD(I) wave. It is noticed that the amplitude ratios of reflected and transmitted waves are affected by the stiffness, electric field, stretch, and thermal properties of the media. Some particular interest cases have been deduced from the present investigations.  相似文献   

2.
The present paper concentrates on the study of reflection and refraction characteristics of plane waves at an imperfectly bonded interface of two orthotropic generalized thermoelastic rotating half-spaces with different elastic and thermal properties. In this type of problem of orthotropic thermoelastic rotating medium, there are three types of plane waves quasi longitudinal (QL-) wave, quasi thermal (T-mode) wave and quasi transverse (QT-) wave, whose velocities depend on the angle of incidence, imperfection and rotation. The amplitude ratios of reflected waves to that of incident one in each case have been derived. Some special cases of boundaries, i.e. normal stiffness, transverse stiffness, thermal contact conductance, slip boundary and welded contact boundary have been deduced from an imperfect one. Effect of rotation on the amplitude ratios of different reflected and refracted waves with respect to incident QL-wave at different boundaries have been studied graphically. It is observed that thermal properties, imperfect boundary and rotation have significant effect on the propagation of waves.  相似文献   

3.
The possibility of plane wave propagation in a micropolar fluid of infinite extent has been explored. The reflection and transmission of longitudinal elastic wave at a plane interface between a homogeneous micropolar fluid half-space and a micropolar solid half-space has also been investigated. It is found that there can exist four plane waves propagating with distinct phase speeds in an infinite micropolar fluid. All the four waves are found to be dispersive and attenuated. The reflection and transmission coefficients are found to be the functions of the angle of incidence, the elastic properties of the half-spaces and the frequency of the incident wave. The expressions of energy ratios have also been obtained in explicit form. Frequency equation for the Stoneley wave at micropolar solid/fluid interface has also been derived in the form of sixth-order determinantal expression, which is found in full agreement with the corresponding result of inviscid liquid/elastic solid interface. Numerical computations have been performed for a specific model. The dispersion curves and attenuation of the existed waves in micropolar fluid have been computed and depicted graphically. The variations of various amplitudes and energy ratios are also shown against the angle of incidence. Results of some earlier workers have been deduced from the present formulation.  相似文献   

4.
Two-dimensional plane wave propagation in an orthotropic micropolar elastic solid is studied. There exist three types of coupled waves in xy-plane, whose velocities depend upon the angle of propagation and material parameters. A problem on reflection of these plane waves from a stress-free boundary is considered. The reflection coefficients of various reflected waves are computed numerically for a particular model of the solid. The effects of anisotropy upon the velocities and reflection coefficients are depicted graphically for different angles of propagation.  相似文献   

5.
A problem concerned with the reflection and refraction of thermoelastic plane waves at an imperfect interface between two generalized thermally conducting cubic crystal solid half-spaces of different elastic and thermal properties with two relaxation times has been investigated. The generalized thermoelastic theory with two relaxation times developed by Green and Lindsay has been used to study the problem. The expressions for the reflection and refraction coefficients which are the ratios of the amplitudes of reflected and refracted waves to the amplitude of incident waves are obtained for an imperfect boundary and deduced for normal stiffness, transverse stiffness, thermal contact conductance, slip and welded boundaries. Amplitude ratios of different reflected and refracted waves for different boundaries with angle of emergence have been compared graphically for different incident waves. It is observed that the amplitude ratios of reflected and refracted waves are affected by the stiffness and thermal properties of the media.  相似文献   

6.
This work is concerned with the wave propagation and their reflection and transmission from a plane interface between two different electro-microelastic solid half-spaces in perfect contact. It is found that there exist five basic waves in an infinite electro-microelastic solid, namely an independent longitudinal micro-rotational wave, two sets of coupled longitudinal waves influenced by the electric effect, and two sets of coupled transverse waves. The existence of the two sets of coupled longitudinal waves is new. In the absence of microstretch and electric effects, these two coupled longitudinal waves reduce to a longitudinal displacement wave of micropolar elasticity. Amplitude and energy ratios of various reflected and transmitted waves are presented when (i) a set of coupled longitudinal wave is made incident and (ii) a set of coupled transverse wave is made incident. Numerical computations have been performed for a particular model and the variations of amplitude and energy ratios are obtained against the angle of incidence. The results obtained are depicted graphically. It has been verified that the sum of energy ratios is equal to unity at the interface and the amplitude ratios of reflected and transmitted waves depend upon the angle of incidence, frequency and elastic properties of the media. Results of some earlier workers have also been reduced from the present formulation.  相似文献   

7.
The theory of Tuncay and Corapcioglu (Transp Porous Media 23:237–258, 1996a) has been employed to investigate the possibility of plane wave propagation in a fractured porous medium containing two immiscible fluids. Solid phase of the porous medium is assumed to be linearly elastic, isotropic and the fractures are assumed to be distributed isotropically throughout the medium. It has been shown that there can exist four compressional waves and one rotational wave. The phase speeds of these waves are found to be affected by the presence of fractures, in general. Of the four compressional waves, one arises due to the presence of fractures in the medium and the remaining three are those encountered by Tuncay and Corapcioglu (J Appl Mech 64:313–319, 1997). Reflection and transmission phenomena at a plane interface between a uniform elastic half-space and a fractured porous half-space containing two immiscible fluids, are analyzed due to incidence of plane longitudinal/transverse wave from uniform elastic half-space. Variation of modulus of amplitude and energy ratios with the angle of incidence are computed numerically by taking the elastic half-space as granite and the fractured porous half-space as sandstone material containing non-viscous wetting and non-wetting fluid phases. The results obtained in case of porous half-space with fractures, are compared graphically with those in case of porous half-space without fractures. It is found that the presence of fractures in the porous half-space do affect the reflection/transmission of waves, which is responsible for raising the reflection and lowering the transmission coefficients.  相似文献   

8.
The present study is concerned with the reflection and transmission of plane waves at an interface between homogenous invisicid liquid half space and a micropolar liquid-saturated porous solid half space. The reflection and transmission coefficients of various reflected and transmitted waves with the angle of incident have been obtained. Numerical calculation has been performed for amplitude ratios of various reflected and transmitted waves. Micropolarity and porosity effects on the reflection and transmission coefficients have been depicted graphically. Some particular cases have been deduced from the present formulation.  相似文献   

9.
Wave propagation in a porous elastic medium saturated by two immiscible fluids is investigated. It is shown that there exist three dilatational waves and one transverse wave propagating with different velocities. It is found that the velocities of all the three longitudinal waves are influenced by the capillary pressure, while the velocity of transverse wave does not at all. The problem of reflection and refraction phenomena due to longitudinal and transverse wave incident obliquely at a plane interface between uniform elastic solid half-space and porous elastic half-space saturated by two immiscible fluids has been analyzed. The amplitude ratios of various reflected and refracted waves are found to be continuous functions of the angle of incidence. Expression of energy ratios of various reflected and refracted waves are derived in closed form. The amplitude ratios and energy ratios have been computed numerically for a particular model and the results obtained are depicted graphically. It is verified that during transmission there is no dissipation of energy at the interface. Some particular cases have also been reduced from the present formulation.  相似文献   

10.
The propagation of plane vertical transverse waves at an interface of a semi-infinite piezoelectric elastic medium under the influence of the initial stresses is discussed. The free surface of the piezoelectric elastic medium is considered to be adjacent to vacuum. We assumed that the piezoelectric material is anisotropic of the type of a transversely isotropic crystals (hexagonal crystal structure, class 6 mm). For an incident of vertical transverse plane wave, four types (two for the displacement and two for the electric potential) of reflected plane waves, called quasi-longitudinal (qP) and quasi-shear vertical (qSV) waves are shown to be exist. The relations governing the reflection coefficients of these reflected waves for various boundary conditions (mixed-free-fixed) are derived. It has been shown analytically that reflected coefficients of (qP) and (qSV) waves depend upon the angle of incidence, the parameters of electric potential, the material constants of the medium as well as the initial stresses presented in the medium. The numerical computations of reflection coefficients for different values of initial stresses have been carried out by computer for aluminum nitride (AlN) as an example and the results are given in the form of graphs. Finally, particular cases are considered in the absence of the initial stresses and the electric potential. Some of earlier studies have been compared to the special cases and shown good agreement with them.  相似文献   

11.
In this paper, the governing relations and equations are derived for nonlocal elastic solid with voids. The propagation of time harmonic plane waves is investigated in an infinite nonlocal elastic solid material with voids. It has been found that three basic waves consisting of two sets of coupled longitudinal waves and one independent transverse wave may travel with distinct speeds. The sets of coupled waves are found to be dispersive, attenuating and influenced by the presence of voids and nonlocality parameters in the medium. The transverse wave is dispersive but non-attenuating, influenced by the nonlocality and independent of void parameters. Furthermore, the transverse wave is found to face critical frequency, while the coupled waves may face critical frequencies conditionally. Beyond each critical frequency, the respective wave is no more a propagating wave. Reflection phenomenon of an incident coupled longitudinal waves from stress-free boundary surface of a nonlocal elastic solid half-space with voids has also been studied. Using appropriate boundary conditions, the formulae for various reflection coefficients and their respective energy ratios are presented. For a particular model, the effects of non-locality and dissipation parameter (\(\tau \)) have been depicted on phase speeds and attenuation coefficients of propagating waves. The effect of nonlocality on reflection coefficients has also been observed and shown graphically.  相似文献   

12.
In this paper we have derived reflection and transmission coefficients of qP-waves at a corrugated interface between two different elastic half-spaces of monoclinic type. Using Rayleigh’s method, the expressions for reflection and transmission coefficients are derived in closed form for a specific interface and for the first order approximation of the corrugation. Numerical computations are performed for a specific model and the results obtained have been shown graphically. The variation of the modulus of reflection and transmission coefficients with the angle of incidence, frequency and corrugation of the interface are shown separately. These coefficients are found to be strongly influenced by the angle of incidence, frequency, elastic parameters and amplitude of the corrugation of the interface. It is found that (i) the modulus of reflection and transmission coefficients at the plane interface are independent of corrugation of the interface and that of frequency of the incident wave, (ii) the reflection and transmission coefficients of regularly reflected and transmitted waves are found to be greater than that of irregularly reflected and transmitted waves, (iii) the coefficients of irregularly reflected and transmitted waves are found to increase and decrease with increase of corrugation and frequency parameters respectively. The results of Singh and Khurana [Singh, S.J., Khurana, S., 2001. Reflection and transmission of P- and SV-waves at the interface two between monoclinic elastic half-spaces. Proc. Natl. Acad. Sci. India 71(A) (IV), 305–319] have been reduced from the present problem.  相似文献   

13.
The present investigation is concerned with the wave propagation at an interface of a micropolar generalized thermoelastic solid half space and a heat conducting micropolar fluid half space. Reflection and transmission phenomena of plane waves are investigated, which impinge obliquely at the plane interface between a micropolar generalized thermoelastic solid half space and a heat conducting micropolar fluid half space.The incident wave is assumed to be striking at the interface after propagating through the micropolar generalized thermoelastic solid. The amplitude ratios of various reflected and transmitted waves are obtained in a closed form. It is found that they are a function of the angle of incidence and frequency and are affected by the elastic properties of the media. Micropolarity and thermal relaxation effects are shown on the amplitude ratios for a specific model. The results of some earlier literatures are also deduced from the present investigation.  相似文献   

14.
15.
Based on the poroelasticity theory, this article investigates the reflection and transmission characteristics of an incident plane transverse wave at a plane interface between an isotropic elastic half-space and an unsaturated poroelastic solid half-space. For this purpose, the effect of the saturation degree and frequency on the properties of the four bulk waves in unsaturated porous medium, i.e., three longitudinal waves and one transverse wave, are discussed at first. Two general cases of mode conversion are considered: (i) The initial transverse wave is incident from an unsaturated poroelastic half-space to the interface, and (ii) the initial transverse wave is incident from an elastic solid half-space to the interface. The expressions for the partition of energy at the interface during transmission and reflection process of waves are presented in explicit forms. At last, numerical computations are performed for these two cases and the results obtained are depicted, respectively. The variation of the amplitude ratios and energy ratios with the saturation degree and incident angle is illustrated in detail. It is also verified that, at the interface, the sum of energy ratios is approximately equal to unity as expected.  相似文献   

16.
The reflection and transmission of elastic waves through a couple-stress elastic slab that is sandwiched between two couple-stress elastic half-spaces are studied in this paper. Because of the couple-stress effects, there are three types of elastic waves in the couple-stress elastic solid, two of which are dispersive. The interface conditions between two couple-stress solids involve the surface couple and rotation apart from the surface traction and displacement. The nontraditional interface conditions between the slab and two solid half-spaces are used to obtain the linear algebraic equation sets from which the amplitude ratios of reflection and transmission waves to the incident wave can be determined. Then, the energy fluxes carried by the various reflection and transmission waves are calculated numerically and the normal energy flux conservation is used to validate the numerical results. The special case, couple-stress elastic slab sandwiched by the classical elastic half-spaces, is also studied and compared with the situation that the classical elastic slab sandwiched by the classical elastic half-spaces. Incident longitudinal wave (P wave) and incident transverse wave (SV wave) are both considered. The influences of the couple-stress are mainly discussed based on the numerical results. It is found that the couple-stress mainly influences the transverse modes of elastic waves.  相似文献   

17.
The problem of reflection and transmission of plane periodic waves incident on the interface between the loosely bonded elastic solid and micropolar porous cubic crystal half spaces is investigated. This is done by assuming that the interface behaves like a dislocation, which preserves the continuity of traction while allowing a finite amount of slip. Amplitude ratios of various reflected and transmitted waves have been depicted graphically. Some special cases of interest have been deduced from the present investigation.  相似文献   

18.
In the structural design of mechanical products, natural frequencies must be controlled to reduce noise and vibration. In particular, the stiffness of the joints which assemble the structural components affects the natural frequencies. Therefore, it is important to predict the influence of joint stiffness on natural frequencies. Generally, these effects are determined by iterative finite element analyses of assembled structural models. Because this results in high computational costs, the sensitivity of natural frequencies to joint stiffness should be determined by a different approach to make the structural design process more efficient. Therefore, this paper proposes the use of reflection and transmission coefficients of elastic joints to predict the dependency of natural frequencies on joint stiffness. First, we formulate the reflection and transmission coefficients of joint stiffness, and then organize the coefficients using a ray tracing method. These formulations enable us to discuss the mechanisms which determine the natural frequency of a structure based on a wave approach using the phase-closure principle. Therefore, by applying the phase-closure principle to the frame structure, we investigate the formation of bending modes, which suggests that the effects of joint stiffness on natural frequencies correspond to the dependence of the reflection and transmission coefficients on joint stiffness. Therefore, these coefficients are useful indicators for estimating the influence of joint stiffness.  相似文献   

19.
The propagation, reflection, and transmission of SH waves in slightly compressible, finitely deformed elastic media are considered in this paper. The dispersion relation for SH-wave propagation in slightly compressible, finitely deformed layer overlying a slightly compressible, finitely deformed half-space is derived. The present paper also deals with the reflection and refraction (transmission) phenomena due to the SH wave incident at the plane interface between two distinct slightly compressible, finitely deformed elastic media. The closed form expressions for the amplitude ratios of reflection and refraction coefficients of the reflected and refracted SH waves are obtained from suitable boundary conditions. For the numerical discussions, we consider the Neo-Hookean form of a strain energy function. The phase speed curves, the variations of reflection, and transmission coefficients with the angle of incidence, and the plots of the slowness sections are presented by means of graphs.  相似文献   

20.
The problem of diffraction of waves due to plane harmonic SH-waves incident normally on a line crack situated in an infinite micropolar elastic medium has been considered. The solution of the problem is obtained for both low and high frequencies for small coupling parameter. The stress-intensity factors in micropolar elastic medium have been derived. The stress-intensity factor for such problem in an elastic medium can be deduced from results obtained in this paper. It is also found that the effect of micropolarity in the propagation of waves is more significant in high frequencies than low frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号