首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of the ruthenium stanna-closo-dodecaborate complex [Bu(3)MeN](2)[Ru(dppb)(MeCN)(2)(SnB(11)H(11))(2)] by an unprecedented, reversible eta(3)(B-H) to eta(1)(Sn) rearrangement of [Bu(3)MeN](2)[Ru(dppb)(SnB(11)H(11))(2)] is described and the product is characterized by multinuclear NMR spectroscopy and single-crystal X-ray diffraction.  相似文献   

2.
Reaction of the stanna-closo-dodecaborate salt [Bu3MeN]2[SnB11H11] with the dimeric ruthenium complex [Ru2(mu-Cl)3(triphos)2]Cl (triphos = {MeC(CH2PPh2)3}) in refluxing acetonitrile yields the zwitterionic compound [Ru(SnB11H11)(MeCN)2(triphos)] (4) which has been characterized by single-crystal X-ray diffraction analysis and solid-state NMR spectroscopy. Refluxing the zwitterion in acetone leads to an eta1(Sn) to eta3(BH) rearrangement with formation of [Ru(SnB1)H11)(triphos)] (5) whose structure has been confirmed by X-ray diffraction and multinuclear NMR spectroscopy in solution and in the solid state. Furthermore, two isomeric zwitterions fac- and mer-[Ru(SnB11H11)(dppb)(MeCN)3] (6a, 6b) and their rearrangement reactions as well as their NMR properties are described.  相似文献   

3.
The synthesis and characterization of three ruthenium complexes [Bu(3)MeN][Ru(PPh(3))(2)(NH(2)-B(12)H(11))Cl], [Bu(4)N][Ru(dppb)(NH(2)-B(12)H(11))Cl] and [RuCO(PPh(3))(2)(NH(2)-B(12)H(11))] with amino-closo-dodecaborate as the coordinating ligand are described.  相似文献   

4.
The compound [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)6}-closo-2,1-RuCB10H8] 1a reacts with PMe3 or PCy3(Cy = cyclo-C6H11) to give the structurally different species [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)5(PMe3)}-closo-2,1-RuCB10H8] 4 and [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(CO)5(PCy3)}-closo-2,1-RuCB10H8]5, respectively. A symmetrically disubstituted product [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)4(PMe3)2}-closo-2,1-RuCB10H8] 6 is obtained using an excess of PMe3. In contrast, the chelating diphosphines 1,1'-(PPh2)2-Fe(eta-C5H4)2 and 1,2-(PPh2)2-closo-1,2-C2B10H10 react with 1a to yield oxidative-insertion species [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(micro-[1',1'-(PPh2)2-Fe(eta-C5H4)2])(CO)4}-closo-2,1-RuCB10H8] 7 and [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(CO)4(1',2'-(PPh2)2-closo-1',2'-C2B10H10)}-closo-2,1-RuCB10H8] 8, respectively. In toluene at reflux temperatures, 1a with Bu(t)SSBu(t) gives [1-SMe2-2,2-(CO)2-7-(mu-SBu(t))-11-(mu-H)-2,7,11-{Ru2(mu-H)(mu-SBu(t))(CO)4}-closo-2,1-RuCB10H8] 9, and with Bu(t)C [triple bond] CH gives [1-SMe2-2,2-(CO)2-7-{mu:eta2-(E)-CH=C(H)Bu(t)}-11-{mu:eta2-(E)-CH=C(H)Bu(t)}-2,7,11-{Ru2(CO)5}-closo-2,1-RuCB10H8] 10. In the latter, two alkyne groups have inserted into cage B-H groups, with one of the resulting B-vinyl moieties involved in a C-H...Ru agostic bond. Oxidation of 1a with I2 or HgCl2 affords the mononuclear ruthenium complex [1-SMe2-2,2,2-(CO)3-closo-2,1-RuCB10H10] 11.  相似文献   

5.
The tetrasubstituted polyanions of platinum, palladium, and gold [M(SnB(11)H(11))(4)](x-) (x=6, M=Pd, Pt; x=5, M=Au) have been prepared and characterized by single-crystal X-ray diffraction, elemental analysis, IR, Raman, (11)B, and (119)Sn heteronuclear NMR spectroscopy. In the case of the platinum derivative [Bu(3)MeN](6)[Pt(SnB(11)H(11))(4)] (2) (119)Sn M?ssbauer spectroscopy has been carried out. The isolated salts are stable towards moisture and air and the complexes 2 and 3 were treated with 1,3-bis(diphenylphosphino)propane (dppp) to give the respective substitution products [Bu(3)MeN](2)[(dppp)M(SnB(11)H(11))(2)] (M=Pd, Pt).  相似文献   

6.
Thermolysis of [Ru(AsPh3)3(CO)H2] with the N-aryl heterocyclic carbenes (NHCs) IMes (1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene), IPr (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) or the adduct SIPr.(C6F5)H (SIPr=1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene), followed by addition of CH2Cl2, affords the coordinatively unsaturated ruthenium hydride chloride complexes [Ru(NHC)2(CO)HCl] (NHC=IMes , IPr , SIPr ). These react with CO at room temperature to yield the corresponding 18-electron dicarbonyl complexes . Reduction of and [Ru(IMes)(PPh3)(CO)HCl] () with NaBH4 yields the isolable borohydride complexes [Ru(NHC)(L)(CO)H(eta2-BH4)] (, L=NHC, PPh3). Both the bis-IMes complex and the IMes-PPh3 species react with CO at low temperature to give the eta1-borohydride species [Ru(IMes)(L)(CO)2H(eta1-BH4)] (L=IMes , PPh3), which can be spectroscopically characterised. Upon warming to room temperature, further reaction with CO takes place to afford initially [Ru(IMes)(L)(CO)2H2] (L=IMes, L=PPh3) and, ultimately, [Ru(IMes)(L)(CO)3] (L=IMes , L=PPh3). Both and lose BH3 on addition of PMe2Ph to give [Ru(IMes)(L)(L')(CO)H2](L=L'=PMe2Ph; L=PPh3, L'=PMe2Ph). Compounds and have been tested as catalysts for the hydrogenation of aromatic ketones in the presence of (i)PrOH and H2. For the reduction of acetophenone, catalytic activity varies with the NHC present, decreasing in the order IPr>IMes>SIMes.  相似文献   

7.
A series of molybdenum and tungsten organometallic oxides containing [Ru(arene)]2+ units (arene =p-cymene, C6Me6) was obtained by condensation of [[Ru(arene)Cl2]2] with oxomolybdates and oxotungstates in aqueous or nonaqueous solvents. The crystal structures of [[Ru(eta6-C6Me6]]4W4O16], [[Ru(eta6-p-MeC6H4iPr]]4W2O10], [[[Ru-(eta6-p-MeC6H4iPr)]2(mu-OH)3]2][[Ru(eta6-p-MeC6H4iPr)]2W8O28(OH)2[Ru(eta6-p-MeC6H4iPr)(H2O)]2], and [[Ru(eta6-C6Me6)]2M5O18[Ru(eta6-C6Me6)(H2O)]] (M = Mo, W) have been determined. While the windmill-type clusters [[Ru(eta6-arene)]4(MO3)4(mu3-O)4] (M = Mo, W; arene =p-MeC6H4iPr, C6Me6), the face-sharing double cubane-type cluster [[Ru(eta6-p-MeC6H4iPr)]4(WO2)2(mu3-O)4(mu4-O)2], and the dimeric cluster [[Ru(eta6-p-MeC6H4iPr)(WO3)3(mu3-O)3(mu3-OH)Ru(eta6-pMeC6H4iPr)(H2O)]2(mu-WO2)2]2- are based on cubane-like units, [(Ru(eta6-C6Me6)]2M5O18[Ru(eta6-C6Me6)(H2O)]] (M = Mo, W) are more properly described as lacunary Lindqvist-type polyoxoanions supporting three ruthenium centers. Precubane clusters [[Ru(eta6-arene)](MO3)2(mu-O)3(mu3-O)]6- are possible intermediates in the formation of these clusters. The cluster structures are retained in solution, except for [[Ru(eta6-p-MeC6H4iPr)]4Mo4O16], which isomerizes to the triple-cubane form.  相似文献   

8.
Chloro complexes [RuCl(N-N)P3]BPh4 (1-3) [N-N = 2,2'-bipyridine, bpy; 1,10-phenanthroline, phen; 5,5'-dimethyl-2,2'-bipyridine, 5,5'-Me2bpy; P = P(OEt)3, PPh(OEt)2 and PPh2OEt] were prepared by allowing the [RuCl4(N-N)].H2O compounds to react with an excess of phosphite in ethanol. The bis(bipyridine) [RuCl(bpy)2[P(OEt)3]]BPh4 (7) complex was also prepared by reacting RuCl2(bpy)2.2H2O with phosphite and ethanol. Treatment of the chloro complexes 1-3 and 7 with NaBH4 yielded the hydride [RuH(N-N)P3]BPh4 (4-6) and [RuH(bpy)2P]BPh4 (8) derivatives, which were characterized spectroscopically and by the X-ray crystal structure determination of [RuH(bpy)[P(OEt)3]3]BPh4 (4a). Protonation reaction of the new hydrides with Br?nsted acid was studied and led to dicationic [Ru(eta2-H2)(N-N)P3]2+ (9, 10) and [Ru(eta(2-H2)(bpy)2P]2+ (11) dihydrogen derivatives. The presence of the eta2-H2 ligand was indicated by a short T(1 min) value and by the measurements of the J(HD) in the [Ru](eta2-HD) isotopomers. From T(1 min) and J(HD) values the H-H distances of the dihydrogen complexes were also calculated. A series of ruthenium complexes, [RuL(N-N)P3](BPh4)2 and [RuL(bpy)2P](BPh4)2 (P = P(OEt)3; L = H2O, CO, 4-CH3C6H4NC, CH3CN, 4-CH3C6H4CN, PPh(OEt)2], was prepared by substituting the labile eta2-H2 ligand in the 9, 10, 11 derivatives. The reactions of the new hydrides 4-6 and 8 with both mono- and bis(aryldiazonium) cations were studied and led to aryldiazene [Ru(C6H5N=NH)(N-N)P3](BPh4)2 (19, 21), [[Ru(N-N)P3]2(mu-4,4'-NH=NC6H4-C6H4N=NH)](BPh4)4 (20), and [Ru(C6H5N=NH)(bpy)2P](BPh4)2 (22) derivatives. Also the heteroallenes CO2 and CS2 reacted with [RuH(bpy)2P]BPh4, yielding the formato [Ru[eta1-OC(H)=O](bpy)2P]BPh4 and dithioformato [Ru[eta1-SC(H)=S](bpy)2P]BPh4 derivatives.  相似文献   

9.
Three stannaborate complexes of platinum(II) and a novel stannoborate palladium(II) derivative have been prepared in excellent yield. The tin transition metal bond is formed through nucleophilic substitution and the resulting complexes [Bu3MeN] [trans-[(Et3P)2Pt(SnB11H11)H]] (6), [trans-[(Et3P)2Pt(SnB11H11)(CNtBu)]] (7), [Bu3MeN]2[trans-[(Et3P)2Pt(SnB11H11)2-(CNtBu)]] (8), and [Bu3MeN][(dppe)-Pd(SnB11H11)Me] (12) (dppe = 1,2-bis-(diphenylphosphanyl)ethane) were characterized by NMR spectroscopy and elemental analysis. In the cases of the zwitterion 7, the pentacoordinated complex 9, the palladium salt 12 and [(triphos)Pt(SnB11H11)] (10) (triphos = 1,1,1-tris(diphenylphosphanylmethyl)ethane), their solid-state structures are determined by X-ray crystal structure analyses. The trans influence of the [SnB11H11] ligand is evaluated from the results of the IR spectroscopy and X-ray crystallographic structures of complexes 6, 7, and 12. The dipole moment of the zwitterion 7 is calculated by density functional theory (DFT) methods. The alignment of the dipole moments of the polar molecules 7 and 12 in the solid state is discussed.  相似文献   

10.
Neutral and cationic mononuclear complexes containing both group 15 and polypyridyl ligands [Ru(kappa3-tptz)(PPh3)Cl2] [1; tptz=2,4,6-tris(2-pyridyl)-1,3,5-triazine], [Ru(kappa3-tptz)(kappa2-dppm)Cl]BF4 [2; dppm=bis(diphenylphosphino)methane], [Ru(kappa3-tptz)(PPh3)(pa)]Cl (3; pa=phenylalanine), [Ru(kappa3-tptz)(PPh3)(dtc)]Cl (4; dtc=diethyldithiocarbamate), [Ru(kappa3-tptz)(PPh3)(SCN)2] (5) and [Ru(kappa3-tptz)(PPh3)(N3)2] (6) have been synthesized. Complex 1 has been used as a metalloligand in the synthesis of homo- and heterodinuclear complexes [Cl2(PPh3)Ru(micro-tptz)Ru(eta6-C6H6)Cl]BF4 (7), [Cl2(PPh3)Ru(mu-tptz)Ru(eta6-C10H14)Cl]PF6 (8), and [Cl2(PPh3)Ru(micro-tptz)Rh(eta5-C5Me5)Cl]BF4 (9). Complexes 7-9 present examples of homo- and heterodinuclear complexes in which a typical organometallic moiety [(eta6-C6H6)RuCl]+, [(eta6-C10H14)RuCl]+, or [(eta5-C5Me5)RhCl]+ is bonded to a ruthenium(II) polypyridine moiety. The complexes have been fully characterized by elemental analyses, fast-atom-bombardment mass spectroscopy, NMR (1H and 31P), and electronic spectral studies. Molecular structures of 1-3, 8, and 9 have been determined by single-crystal X-ray diffraction analyses. Complex 1 functions as a good precursor in the synthesis of other ruthenium(II) complexes and as a metalloligand. All of the complexes under study exhibit inhibitory effects on the Topoisomerase II-DNA activity of filarial parasite Setaria cervi and beta-hematin/hemozoin formation in the presence of Plasmodium yoelii lysate.  相似文献   

11.
Vinylidene complexes [Ru[=C=C(H)CR1R2CH2C(Me)=CH2](eta5-C9H7)(PPh3)2][BF4] undergo an intramolecular coupling between the alkenyl-vinylidene fragment and the eta5-indenyl ligand to afford indene-metallacyclic compounds (6a,b) in which the resulting functionalised indene group is eta6-coordinated to the metal.  相似文献   

12.
Treatment of the isomeric 12-vertex nickelacarbaborane salts [NEt(4)][3-(eta3)-C(3)H(5))-closo-3,1,2-NiC(2)B(9)H(11)] and [NEt(4)][2-(eta3)-C(3)H(5))-closo-2,1,7-NiC(2)B(9)H(11)] with [CuCl(PPh(3))](4) and Tl[PF(6)] affords the zwitterionic bimetallic species [3-(eta3)-C(3)H(5))-3,4,8-[Cu(PPh(3))]-4,8-(mu-H)(2)-closo-3,1,2-NiC(2)B(9)H(9)] and [2-(eta3)-C(3)H(5))-2,6,11-(Cu(PPh(3)))-6,11-(mu-H)(2)-closo-2,1,7-NiC(2)B(9)H(9)], respectively. Similarly, the 13-vertex nickelacarbaborane [NEt(4)][4-(eta3)-C(3)H(5))-closo-4,1,6-NiC(2)B(10)H(12)] reacts with sources of mono-cationic metal fragments to form [4-(eta3)-C(3)H(5))-7,8,13-(Cu(PPh(3)))-7,8,13-(mu-H)(3)-4,1,6-closo-NiC(2)B(10)H(9)], [4-(eta3)-C(3)H(5))-3,8-(Rh(PPh(3))(2))-3,8-(mu-H)(2)-4,1,6-closo-NiC(2)B(10)H(10)] and [4-(eta3)-C(3)H(5))-3,7,8-(RuCl(PPh(3))(2))-3,7,8-(mu-H)(3)-4,1,6-closo-NiC(2)B(10)H(9)]. The molecular structures of these five new bimetallic compounds were determined by X-ray diffraction studies, confirming that exopolyhedral Cu, Rh and Ru fragments are attached to the cluster via B-H[right harpoon up]M agostic-type interactions and, in the case of the (NiC(2)B(9)) species, by a metal-metal bond.  相似文献   

13.
A straightforward procedure for the formation of mixed metal Au/Sn clusters is presented: reaction of the heteroborate [SnB11H11]2- with phosphine gold electrophiles gave the clusters [Bu3NH]3[{(Et3P)Au(SnB11H11)}3] and [Bu3MeN]4[{(dppm)Au2(SnB11H11)2}2], which were characterised by X-ray diffraction.  相似文献   

14.
15.
The study of the reaction between the ethylene [Pt(eta-H2C = CH2)(PPh3)2] or alkyne [Pt(eta2-HC [triple bond] CR)(PPh3)2] (R = SiMe3 1, Bu(t) 2) complexes with [cis-Pt(C6F5)2(thf)2] (thf = tetrahydrofuran) has enabled us to observe the existence of competitive processes between the activation of a P-C(Ph) bond on the PPh3 ligand, to give the binuclear derivative [cis-(C6F5)2Pt(mu-Ph)(mu-PPh2)Pt(PPh3)] 3, and the activation of a C-H bond of the unsaturated group, to give the corresponding (mu-hydride)(mu-vinyl) [cis, cis-(PPh3)2Pt(mu-H)(mu-1kappaC(alpha):eta2-CH = CH2)Pt(C6F5)2] 4 or (mu-hydride)(mu-alkynyl) [cis,cis-(PPh3)2Pt(mu-H)(mu-1kappaC(alpha):eta2-C [triple bond]CR)Pt(C6F5)2] (R = SiMe3 5, Bu(t) 6) compounds, respectively. The monitoring of these reactions by NMR spectroscopy has allowed us to detect several intermediates, and to propose a mechanism for the C-H bond activation. In addition, the structures of the (muo-hydride)(mu-alkynyl) complex 5 and the unprecedented (mu-hydride)(mu-vinyl) derivative 4 have been obtained by X-ray crystallographic analyses.  相似文献   

16.
[PPh4]2[M(C2N2S2)2](M = Pt, Pd) and [Pt(C2N2S2)(PR3)2](PR3= PMe2Ph, PPh3) and [Pt(C2N2S2)(PP)](PP = dppe, dppm, dppf) were all obtained by the reaction of the appropriate metal halide containing complex with potassium cyanodithioimidocarbonate. The dimeric cyanodithioimidocarbonate complexes [[Pt(C2N2S2)(PR3)]2](PR3 = PMe2Ph), [M[(C2N2S2)(eta5-C5Me5)]2](M = Rh, Ir)and [[Ru(C2N2S2)(eta6-p-MeC6H4iPr)]2] have been synthesised from the appropriate transition metal dimer starting material. The cyanodithioimidocarbonate ligand is S,S and bidentate in the monomeric complexes with the terminal CN group being approximately coplanar with the CS2 group and trigonal at nitrogen thus reducing the planar symmetry of the ligand. In the dimeric compound one of the sulfur atoms bridges two metal atoms with the core exhibiting a cubane-like geometry.  相似文献   

17.
The ruthenium complexes, [(eta5-C5R5)Ru(CH3CN)3]PF6 (1-Cp*, R = Me; 1-Cp, R = H), underwent reaction with both 1-(2-chloro-1-methylvinyl)-2-pentynyl-(Z)-cyclopentene (6-Z) and 1-(2-chloro-1-methylvinyl)-2-pentynyl-(E)-cyclopentene (6-E) to give (eta5-C5R5)Ru[eta6-(5-chloro-4-methyl-6-propylindan)]PF6 (7-Cp*, R = Me; 7-Cp, R = H). In a similar fashion, reaction of 1-Cp and 1-Cp* with 1-isopropenyl-2-pent-1-ynylcyclopentene (8) led to the formation of (eta5-C5R5)Ru(eta6-4-methyl-6-propylindan)]PF6 (9-Cp*, R = Me; 9-Cp, R = H). The reaction of 1-Cp* with 8 at -60 degrees C in CDCl3 solution led to observation of the eta6-dienyne complex, (eta5-C5Me5)Ru[eta6-(1-isopropenyl-2-pent-1-ynylcyclopentene)]PF6 (10), by 1H NMR spectroscopy. Complexes 7-Cp and 10 were characterized by X-ray crystallographic analysis.  相似文献   

18.
Reaction of the methylcyclopentadienyl (Cp') cluster compound [(eta(5)-Cp')(3)Mo(3)S(4)][pts] (pts = p-toluenesulfonate) with noble metal alkene complexes resulted in the formation of four new heterobimetallic cubane-like Mo(3)S(4)M' cluster cores (M' = Ru, Os, Rh, Ir). Thus, reaction with [(1,5-cod)Ru(CO)(3)] or [(1,3-cod)Os(CO)(3)] (cod = cyclooctadiene) afforded [(eta(5)-Cp')(3)Mo(3)S(4)M'(CO)(2)][pts] (M' = Ru: [1][pts]; M' = Os: [2][pts]). When [1][pts] was kept in CH(2)Cl(2)/pentane solution, partial loss of carbonyl ligands occurred and the carbonyl-bridged dicubane cluster [((eta(5)-Cp')(3)Mo(3)S(4)Ru)(2)(mu-CO)(3)][pts](2) was isolated. An X-ray crystal structure revealed the presence of the hitherto unobserved Ru(mu-CO)(3)Ru structural element. The formation of cluster compounds containing Mo(3)S(4)Rh and Mo(3)S(4)Ir cores was achieved in boiling methanol by reacting [(eta(5)-Cp')(3)Mo(3)S(4)][pts] with [M'Cl(cyclooctene)(2)](2) (M' = Rh, Ir) in the presence of PPh(3). In this way [(eta(5)-Cp')(3)Mo(3)S(4)M'Cl(PPh(3))][pts] (M' = Rh, Ir) could be isolated. An alternative route to the Mo(3)S(4)Rh cluster core was found in the reaction of [(eta(5)-Cp')(3)Mo(3)S(4)][pts] with [RhCl(1,5-cod)](2), which yielded [(eta(5)-Cp')(3)Mo(3)S(4)Rh(cod)][pts](2) ([7][pts](2)). Substitution of the cod ligand in [7][pts](2) by 1,3-bis(diphenylphosphanyl)propane (dppp) gave [(eta(5)-Cp')(3)Mo(3)S(4)Rh(dppp)][pts](2).  相似文献   

19.
The reaction of the sodium salt of 1-amino-closo-dodecaborate [Na]2[NH2-B12H11] ([Na]2[1]) with [Au(PPh3)Cl] and [Ni(THF)2(Br)2] led to eta 1(N) coordination of 1in [Na][Au(PPh3)(NH2-B12H11)] (2) and [Na]6[Ni(NH2-B12H11)4] (3), respectively. Furthermore, eta 2(N,BH) coordination of was found in [MePPh3][Rh(PPh3)2(NH2-B12H11)] (4), which was synthesized by the reaction of [MePPh3][Na][1] with [Rh(PPh3)3Cl]. All compounds were characterized by single crystal X-ray diffraction and heteronuclear NMR spectroscopy.  相似文献   

20.
The monocarbon carborane [Cs][nido-7-CB(10)H(13)] reacts with the 16-electron [RuCl(2)(PPh(3))(3)] in a solution of benzene/methanol in the presence of N,N,N',N'-tetramethylnaphthalene-1,8-diamine as the base to give a series of 12-vertex monocarbon arene-biruthenacarborane complexes of two types: [closo-2-[7,11-exo-RuClPPh(3)(mu,eta(6)-C(6)H(5)PPh(2))]-7,11-(mu-H)(2)-2,1-RuCB(10)H(8)R] (5, R = H; 6, R = 6-MeO; 7, R = 3-MeO) and [closo-2-(eta(6)-C(6)H(6))-10,11,12-[exo-RuCl(PPh(3))(2)]-10,11,12-(mu-H)(3)-2,1-RuCB(10)H(7)R(1)] (8a, R(1) = 6-MeO; 8b, R(1) = 3-MeO, inseparable mixture of isomers) along with trace amounts of 10-vertex mononuclear hypercloso/isocloso-type complexes [2,2-(PPh(3))(2)-2-H-3,9-(MeO)(2)-2,1-RuCB(8)H(7)] (9) and [2,5-(Ph(3)P)-2-Cl-2-H-3,9-(MeO)(2)-2,1-RuCB(8)H(6)] (10). Binuclear ruthenacarborane clusters of both series were characterized by a combination of analytical and multinuclear NMR spectroscopic data and by single-crystal X-ray diffraction studies of three selected complexes, 6-8. In solution, isomers 8a,b have been shown to undergo the isomerization process through the scrambling of the exo-[RuCl(PPh(3))(2)] fragment about two adjacent triangular cage boron faces B(7)B(11)B(12) and B(8)B(9)B(12).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号