首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The inhibition of lactoperoxidase (LPO)-catalyzed iodination of l-tyrosine by the anti-thyroid drug methimazole (MMI) and its selenium analogue (MSeI) is described. MSeI inhibits LPO with an IC(50) value of 12.4 microM, and this inhibition could be completely reversed by increasing the peroxide concentration. In addition to the inhibition, MSeI reacts with molecular iodine to produce novel ionic diselenides, and the nature of the species formed in this reaction appear to be solvent-dependent. The formation of ionic species in the reaction is confirmed by single-crystal X-ray studies, FT-IR and FT-Raman spectroscopic investigations. This study provides the first experimental evidence that MSeI not only effectively inhibits the LPO-catalyzed iodination of tyrosine, but also reacts with I(2) to produce novel ionic diselenides. These results also suggest that MSeI reacts with iodine, even in its oxidized form, to form ionic diselenides containing iodide or polyiodide anions, which might be effective intermediates in the inhibition of thyroid hormones.  相似文献   

2.
1-Mesityl-1,3-dihydro-imidazole-2-selone, (seim(Mes))H, may be obtained from 1-mesitylimidazole via (i) deprotonation with Bu(n)Li, (ii) treatment with elemental selenium, and (iii) addition of HCl(aq). Structural characterization of (seim(Mes))H by X-ray diffraction demonstrates that the compound exists as the selone rather than selenol tautomer, a result that is in accord with DFT calculations. Solutions of (seim(Mes))H are oxidized by air to give bis(1-mesitylimidazol-2-yl)diselenide, (seim(Mes))(2). A corresponding investigation of (seim(Me))H demonstrates that, in contrast to a previous report, the selenium analogue of methimazole exists in the selone form with a structure analogous to that of methimazole. (1)H and (77)Se NMR studies demonstrate that the (seim(R)) groups of the selone (seim(R))H and diselenide (seim(R))(2) undergo facile exchange on the NMR time scale.  相似文献   

3.
Hydrogen peroxide, generated by thyroid oxidase enzymes, is a crucial substrate for the thyroid peroxidase (TPO)-catalysed biosynthesis of thyroid hormones, thyroxine (T4) and triiodothyronine (T3) in the thyroid gland. It is believed that the H2O2 generation is a limiting step in thyroid hormone synthesis. Therefore, the control of hydrogen peroxide concentration is one of the possible mechanisms for the inhibition of thyroid hormone biosynthesis. The inhibition of thyroid hormone synthesis is required for the treatment of hyperthyroidism and this can be achieved by one or more anti-thyroid drugs. The most widely used anti-thyroid drug methimazole (MMI) inhibits the production of thyroid hormones by irreversibly inactivating the enzyme TPO. Our studies show that the replacement of sulphur in MMI by selenium leads to a selone, which exists predominantly in its zwitterionic form. In contrast to the sulphur drug, the selenium analogue (MSeI) reversibly inhibits the peroxidase-catalysed oxidation and iodination reactions. Theoretical studies on MSeI reveal that the selenium atom in this compound carries a large negative charge. The carbon-selenium bond length in MSeI is found to be close to single-bond length. As the selenium atom exhibits a large nucleophilic character, the selenium analogue of MMI may scavenge the hydrogen peroxide present in the thyroid cells, which may lead to a reversible inhibition of thyroid hormone biosynthesis.  相似文献   

4.
    
The keto-enol type tautomerism in anti-thyroid drugs and their selenium analogues are described. The commonly used anti-thyroid drug methimazole exists predominantly in its thione form, whereas its selenium analogue exists in a zwitterionic form. To understand the effect of thione/thiol and selone/selenol tautomerism on the inhibition of peroxidase-catalysed reactions, we have synthesized some thiones and selones in which the formation of thiol/selenol forms are blocked by different substituents. These compounds were synthesized by a carbene route utilizing an imidazolium salt. The crystal structures of these compounds reveal that the C=Se bonds in the selones are more polarized than the C=S bonds in the corresponding thiones. The structures of selones were studied in solution by NMR spectroscopy and the 77Se NMR chemical shifts for the selones show large upfield shifts in the signals, confirming their zwitterionic structures in solution. The inhibition of lactoperoxidase by the synthetic thiones indicates that the presence of a free N-H moiety is essential for an efficient inhibition. In contrast, such moiety is not required for an inhibition by the selenium compounds.  相似文献   

5.
The factors that are responsible for the relatively low glutathione peroxidase (GPx)-like antioxidant activity of organoselenium compounds such as ebselen (1, 2-phenyl-1,2-benzisoselenazol-3(2H)-one) in the reduction of hydroperoxides with aromatic thiols such as benzenethiol and 4-methylbenzenethiol as cosubstrates are described. Experimental and theoretical investigations reveal that the relatively poor GPx-like catalytic activity of organoselenium compounds is due to the undesired thiol exchange reactions that take place at the selenium center in the selenenyl sulfide intermediate. This study suggests that any substituent that is capable of enhancing the nucleophilic attack of thiol at sulfur in the selenenyl sulfide state would enhance the antioxidant potency of organoselenium compounds such as ebselen. It is proved that the use of thiol having an intramolecularly coordinating group would enhance the biological activity of ebselen and other organoselenium compounds. The presence of strong S...N or S...O interactions in the selenenyl sulfide state can modulate the attack of an incoming nucleophile (thiol) at the sulfur atom of the -Se-S- bridge and enhance the GPx activity by reducing the barrier for the formation of the active species selenol.  相似文献   

6.
A series of di- and tripeptide-based ebselen analogues has been synthesized. The compounds were characterized by (1)H, (13)C, and (77)Se NMR spectroscopy and mass spectral techniques. The glutathione peroxidase (GPx)-like antioxidant activity has been studied by using H(2)O(2) , tert-butyl hydroperoxide (tBuOOH), and cumene hydroperoxide (Cum-OOH) as substrates, and glutathione (GSH) as a cosubstrate. Although all the peptide-based compounds have a selenazole ring similar to that of ebselen, the GPx activity of these compounds highly depends on the nature of the peptide moiety attached to the nitrogen atom of the selenazole ring. It was observed that the introduction of a phenylalanine (Phe) amino acid residue in the N-terminal reduces the activity in all three peroxide systems. On the other hand, the introduction of aliphatic amino acid residues such as valine (Val) significantly enhances the GPx activity of the ebselen analogues. The difference in the catalytic activity of dipeptide-based ebselen derivatives can be ascribed mainly to the change in the reactivity of these compounds toward GSH and peroxide. Although the presence of the Val-Ala-CO(2) Me moiety facilitates the formation of a catalytically active selenol species, the reaction of ebselen analogues that has a Phe-Ile-CO(2) Me residue with GSH does not generate the corresponding selenol. To understand the antioxidant activity of the peptide-based ebselen analogues in the absence of GSH, these compounds were studied for their ability to inhibit peroxynitrite (PN)-mediated nitration of bovine serum albumin (BSA) and oxidation of dihydrorhodamine 123. In contrast to the GPx activity, the PN-scavenging activity of the Phe-based peptide analogues was found to be comparable to that of the Val-based compounds. However, the introduction of an additional Phe residue to the ebselen analogue that had a Val-Ala dipeptide significantly reduced the potency of the parent compound in PN-mediated nitration.  相似文献   

7.
A revised mechanism that accounts for the glutathione peroxidase (GPx)-like catalytic activity of the organoselenium compound ebselen is described. It is shown that the reaction of ebselen with H(2)O(2) yields seleninic acid as the only oxidized product. The X-ray crystal structure of the seleninic acid shows that the selenium atom is involved in a noncovalent interaction with the carbonyl oxygen atom. In the presence of excess thiol, the Se--N bond in ebselen is readily cleaved by the thiol to produce the corresponding selenenyl sulfide. The selenenyl sulfide thus produced undergoes a disproportionation in the presence of H(2)O(2) to produce the diselenide, which upon reaction with H(2)O(2), produces a mixture of selenenic and seleninic acids. The addition of thiol to the mixture containing selenenic and seleninic acids leads to the formation of the selenenyl sulfide. When the concentration of the thiol is relatively low in the reaction mixture, the selenenic acid undergoes a rapid cyclization to produce ebselen. The seleninic acid, on the other hand, reacts with the diselenide to produce ebselen as the final product. DFT calculations show that the cyclization of selenenic acids to the corresponding selenenyl amides is more favored than that of sulfenic acids to the corresponding sulfenyl amides. This indicates that the regeneration of ebselen under a variety of conditions protects the selenium moiety from irreversible inactivation, which may be responsible for the biological activities of ebselen.  相似文献   

8.
Theoretical calculations have been performed on three model reactions representing the reduction of hydrogen peroxide by ebselen, ebselen selenol, and ebselen diselenide. The reaction surfaces have been investigated at the B3PW91/6-311G(2df,p) level, and single-point energies were calculated using the 6-311++G(3df,3pd) basis set. Solvent effects were included implicitly with the conductor-like polarizable continuum model and in one case with explicit inclusion of three water molecules. Mechanistic information is gained from investigating the critical points using the quantum theory of atoms in molecules. The barriers for the reduction of hydrogen peroxide with the ebselen, ebselen selenol, and ebselen diselenide models are 56.7, 53.4, and 35.3 kcal/mol, respectively, suggesting that ebselen diselenide may be the most active antioxidant in the ebselen GPx redox pathway. Results are also compared to that of the sulfur analogues of the model compounds.  相似文献   

9.
The glutathione peroxidase (GPx) activities of some diaryl diselenides incorporating tertiary amino groups were studied with H(2)O(2), Cum-OOH, and tBuOOH as substrates and with PhSH as thiol co-substrate. Simple replacement of a hydrogen atom with a methoxy group dramatically enhances the GPx activity. The introduction of methoxy substituents ortho to selenium in N,N-dialkylbenzylamine-based compounds makes the basicity of the amino groups perfect for the catalysis. The presence of 6-OMe groups prevents possible SeN interactions in the selenols, increasing their zwitterionic characters. The methoxy substituents also protect the selenium in the selenenic acid intermediates from overoxidation to seleninic acids or irreversible inactivation to selenonic acid derivatives. The additional substituents also play a crucial role in the selenenyl sulfide intermediates, by preventing thiol exchange reactions-which would normally lead to an inactivation pathway-at the selenium centers. The strengths of SeN interactions in the selenenyl sulfide intermediates are dramatically reduced upon introduction of the methoxy substituents, which not only reduce the thiol exchange reactions at selenium but also enhance the nucleophilic attack of the incoming thiols at sulfur. The facile attack of thiols at sulfur in the selenenyl sulfides also prevents the reactions between the selenenyl sulfides and H(2)O(2) that can regenerate the selenenic acids (reverse-GPx cycle). These studies reveal that the simple 6-OMe groups play multiple roles in each of the catalytically active intermediates by introducing steric and electronic effects that are required for efficient catalysis.  相似文献   

10.
In this paper, the effect of some commonly used antithyroid drugs and their analogues on peroxynitrite‐mediated nitration of proteins is described. The nitration of tyrosine residues in bovine serum albumin (BSA) and cytochrome c was studied by Western blot analysis. These studies reveal that the antithyroid drugs methimazole (MMI), 6‐n‐propyl‐2‐thiouracil (PTU), and 6‐methyl‐2‐thiouracil (MTU), which contain thione moieties, significantly reduce the tyrosine nitration of both BSA and cytochrome c. While MMI exhibits good peroxynitrite (PN) scavenging activity, the thiouracil compounds PTU and MTU are slightly less effective than MMI. The S‐ and Se‐ methylated compounds show a weak inhibitory effect in the nitration of tyrosine, indicating that the presence of a thione or selone moiety is important for an efficient inhibition. Similarly, the replacement of N? H moiety in MMI by N‐methyl or Nm‐methoxybenzyl substituents dramatically reduces the antioxidant activity of the parent compound. Theoretical studies indicate that the substitution of N? H moiety by N? Me significantly increases the energy required for the oxidation of sulfur center by PN. However, such substitution in the selenium analogue of MMI increases the activity of parent compound. This is due to the facile oxidation of the selone moiety to the corresponding selenenic and seleninic acids. Unlike N,N′‐disubstituted thiones, the corresponding selones efficiently scavenge PN, as they predominantly exist in their zwitterionic forms in which the selenium atom carries a large negative charge.  相似文献   

11.
The synthesis, structure, and thiol peroxidase-like antioxidant activities of several diaryl diselenides having intramolecularly coordinating amino groups are described. The diselenides derived from enantiomerically pure R-(+)- and S-(-)-N,N-dimethyl(1-ferrocenylethyl)amine show excellent peroxidase activity. To investigate the mechanistic role of various organoselenium intermediates, a detailed in situ characterization of the intermediates has been carried out by (77)Se NMR spectroscopy. While most of the diselenides exert their peroxidase activity via selenol, selenenic acid, and selenenyl sulfide intermediates, the differences in the relative activities of the diselenides are due to the varying degree of intramolecular Se.N interaction. The diselenides having strong Se.N interactions are found to be inactive due to the ability of their selenenyl sulfide derivatives to enhance the reverse GPx cycle (RSeSR + H(2)O(2) = RSeOH). In these cases, the nucleophilic attack of thiol takes place preferentially at selenium rather than sulfur and this reduces the formation of selenol by terminating the forward reaction. On the other hand, the diselenides having weak Se.N interactions are found to be more active due to the fast reaction of the selenenyl sulfide derivatives with thiol to produce diphenyl disulfide and the expected selenol (RSeSR + PhSH = PhSSPh + RSeH). The unsubstituted diaryl diselenides are found to be less active due to the slow reactions of these diselenides with thiol and hydrogen peroxide and also due to the instability of the intermediates. The catalytic cycles of 18 and 19 strongly resemble the mechanism by which the natural enzyme, glutathione peroxidase, catalyzes the reduction of hydroperoxides.  相似文献   

12.
Sarma BK  Mugesh G 《Inorganic chemistry》2006,45(14):5307-5314
The roles of built-in thiol cofactors and the basic histidine (His) residues in the active site of mammalian thioredoxin reductases (TrxRs) are described with the help of experimental and density functional theory calculations on small-molecule model compounds. The reduction of selenenyl sulfides by thiols in selenoenzymes such as glutathione peroxidase (GPx) and TrxR is crucial for the regeneration of the active site. Experimental as well as theoretical studies were carried out with model selenenyl sulfides to probe their reactivity toward incoming thiols. We have shown that the nucleophilic attack of thiols takes place at the selenium center in the selenenyl sulfides. These thiol exchange reactions would hamper the regeneration of the active species selenol. Therefore, the basic His residues are expected to play crucial roles in the selenenyl sulfide state of TrxR. Our model study with internal amino groups in the selenenyl sulfide state reveals that the basic His residues may play important roles by deprotonating the thiol moiety in the selenenic acid state and by interacting with the sulfur atom in the selenenyl sulfide state to facilitate the nucleophilic attack of thiol at sulfur rather than at selenium, thereby generating the catalytically active species selenol. This model study also suggests that the enzyme may use the internal cysteines as cofactors to overcome the thiol exchange reactions.  相似文献   

13.
Density functional theory calculations at the B3LYP/6-311++G(3df,3pd)//B3LYP/6-31G(d,p) level have been performed to elucidate the mechanism and reaction energetics for the reduction of hydrogen peroxide by ebselen, ebselen diselenide, ebselen selenol, and their sulfur analogues. The effects of solvation have been included with the CPCM model, and in the case of the selenol anion reaction, diffuse functions were used on heavy atoms for the geometry optimizations and thermochemical calculations. The topology of the electron density in each system was investigated using the quantum theory of atoms in molecules, and a detailed interpretation of the electronic charge and population data as well as the atomic energies is presented. Reaction free energy barriers for the oxidation of ebselen, ebselen diselenide, and ebselen selenol are 36.8, 38.4, and 32.5 kcal/mol, respectively, in good qualitative agreement with experiment. It is demonstrated that the oxidized selenium atom is significantly destabilized in all cases and that the exothermicity of the reactions is attributed to the peroxide oxygen atoms via reduction. The lower barrier to oxidation exhibited by the selenol is largely due to entropic effects in the reactant complex.  相似文献   

14.
The ephedrine-based diselenide appears as a new promiscuous catalyst, able to generate optically active alcohols by addition of organozinc to aldehydes (up to 97% ee), and shows powerful GPx like activity, reducing H(2)O(2) to water in only 16.33 min (eleven times faster than PhSeSePh).  相似文献   

15.
Diaryl diselenide mimics of the antioxidant selenoprotein glutathione peroxidase (GPx) often incorporate intramolecular Se···N,O interactions to enhance their GPx-like activity. Although the strength of the interaction is defined by the Lewis basicity of the donating group and the strength of the Se-X bond, there is not a clear relationship between the interaction and the GPx-like activity. Density-functional theory and natural bond orbital (NBO) calculations are used to show the range of Se···N,O interactions for various functional groups. The strongest interactions are found for groups which stabilize the donor-acceptor interaction through aromatic stabilization. The activation barriers for the GPx-like mechanism of activity of several substituted areneselenols are calculated using DFT and solvent-assisted proton exchange (SAPE), a technique that incorporates networks of solvent molecules into the theoretical model to facilitate proton transfer between sites in the reactant and product. DFT-SAPE models show that, in addition to decreasing the barrier to oxidation of the selenol, Se···N,O interactions generally increase the barriers for selenenic acid reduction and selenol regeneration because the Se···N,O interaction must be broken for the reaction to proceed. Calculated activation barriers for the rate-determining step are consistent with the relative experimental GPx-like activities of a series of diaryl diselenides.  相似文献   

16.
[structure: see text] The synthesis and characterization of a series of low-valent organoselenium compounds derived from 1-bromo-4-tert-butyl-2,6-di(formyl)benzene (22) is described. The synthesis of diselenide 25 was achieved by the lithiation route whereas bis(4-tert-butyl-2,6-di(formyl)phenyl) diselenide (26) was synthesized by treating 22 with disodium diselenide. A series of monoselenides (27, 28, and 29) was obtained by facile nucleophilic substitution of bromine in 22, using the corresponding selenolates as nucleophiles. The halogenation reactions of bis(4-tert-butyl-2,6-di(formyl)phenyl) diselenide (26) did not afford the corresponding selenenyl halides but resulted in the isolation of an unexpected cyclic selenenate ester 34 as a product. The selenide 32 was synthesized by the treatment of dimethoxymethyl diselenide with trilithiated 2-bromo-5-tert-butyl-N,N'-di(phenyl)isophthalamide. The existence of potential Se...O intramolecular nonbonding interactions was examined by IR, (1)H, and (77)Se NMR spectroscopy, X-ray crystallography, and computational studies. The X-ray crystal structures of 26 and 27, having two ortho formyl groups, reveal the absence of any Se...O interactions. However, the Se...O interactions were observed in the selenenate ester 34 where one of the formyl groups has been utilized for the selenenate ring formation. The crystal structures of 26 and 27 exhibited intermolecular short-range C-H...Se interactions (hydrogen bonding). Although there are four heteroatoms in carbamoyl moieties ortho to selenium capable of forming a five-membered ring on intramolecular coordination, no such intramolecular Se...X (X = N, O) interaction was observed in the crystal structure of 32. The density functional theory calculations at the B3LYP/6-31G* level predicted that for all the diformyl systems (47a-c, 48a-c), the anti,anti conformer (when both formyl oxygen atoms point away from the selenium) is more stable. This preference was found to be reversed in the monoformyl-substituted systems (50a,b, 51a,b), where the syn conformer (when formyl oxygen is near the selenium) is energetically more favorable than the anti conformer.  相似文献   

17.
Oxidative DNA damage occurs in vivo by hydroxyl radical generated in metal-mediated Fenton-type reactions. Cell death and mutation caused by this DNA damage are implicated in neurodegenerative and cardiovascular diseases, cancer, and aging. Treating these conditions with antioxidants, including highly potent selenium antioxidants, is of growing interest. Gel electrophoresis was used to directly quantify DNA damage inhibition by selenium compounds with copper and H(2)O(2). Selenocystine inhibited all DNA damage at low micromolar concentrations, whereas selenomethionine showed similar inhibition at 40 times these concentrations, and 2-aminophenyl diselenide showed no effect. DNA damage inhibition by these selenium compounds does not correspond to their glutathione peroxidase activities, and UV-vis and gel electrophoresis results indicate that selenium-copper coordination is essential for DNA damage inhibition. Understanding this novel metal-coordination mechanism for selenium antioxidant activity will aid in the design of more potent antioxidants to treat and prevent diseases caused by oxidative stress.  相似文献   

18.
The present study describes the biological evaluation of a library of 59 organo-selenium compounds as superoxide (O??) generators and cytotoxic agents in human prostate cancer cells (PC-3) and in breast adenocarcinoma (MCF-7). In order to corroborate that the biological activity for selenium compounds depends on the chemical form, a broad structural variety is presented. These structures include selenocyanates, diselenides, selenoalkyl functional moieties and eight newly synthesized symmetrically substituted dithioselenites and selenylureas. Eleven of the derivatives tested showed high levels of superoxide generation in vitro via oxidation of reduced glutathione (GSH) and nine of them were more catalytic than the reference compound, diselenodipropionic acid. Eighteen of the library compounds inhibited cell growth more than or similar to reference chemotherapeutic drugs in PC-3 and eleven were more potent cytotoxic agents than etoposide in the MCF-7 cell line. Considering both parameters (superoxide generation and cell cytotoxicity) compounds B1, C6 and C9 displayed the best therapeutic profiles. Considering that many diselenide compounds can generate superoxide (O??) in vitro via oxidation of GSH and other thiols, the analogue B1, that contains a diselenide moiety, was selected for a preliminary mechanistic investigation, which revealed that B1 has apoptogenic effects similar to camptothecin mediated by reactive oxygen species (ROS) in lymphocytic leukemia cells (CCRF-CEM) and affected the MCF-7 cell-cycle in G?/M and S-phases.  相似文献   

19.
The selenium analogues of anti-thyroid drugs exhibit their anti-thyroid action by a mechanism different from that of MMI. The selenium analogue of MMI and related selenium compounds exhibit high GPx activity, providing a novel method for the reversible inhibition of thyroid hormone biosynthesis.  相似文献   

20.
The activation of tris(dimethylamino)borane towards reaction with a chiral methimazole by N-methylimidazole has been used to prepare the first example of a chiral tris(methimazolyl)borate ligand. Coordination of this neutral ligand to Ru(II) has been achieved by reaction with [(p-cymene)RuCl(2)](2) to provide a single diastereomer complex in which the chirality of the methimazolyl substituents dictate the chirality of the bicyclo[3.3.3]cage formed by the ligand on coordination to the metal. The alternative approach to chiral tris(methimazolyl)borate ligands involving the introduction of a chiral group onto the boron atom has been explored by replacing N-methylimidazole in the above reaction by chiral oxazolines as activating bases in reaction with simple methimazole. However, although the B(NMe(2))(3) is activated to reaction with methimazole by these oxazolines, an intramolecular oxazoline ring-opening by a coordinated methimazolyl sulfur occurs and prevents the successful synthesis of these ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号