首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partially nanowire-structured TiO2 was prepared by a hydrothermal processing followed by calcination in air. The hydrogen titanate powder as-synthesized was calcined at 300 °C for 4 h to obtain the partially nanowire-structured TiO2. A dye-sensitized solar cell (DSC) with a film thickness of 5.6 μm, fabricated using the partially nanowire-structured TiO2 showed better performance than using a fully nanowire-structured TiO2 or a conventional equi-axed TiO2 nanopowder. The short-circuit current density (JSC), the open-circuit voltage (VOC), the fill factor (FF) and the overall efficiency (η) are 11.9 mA/cm2, 0.754 V, 0.673 and 6.01 %, respectively. The effects of one-dimensional nanostructure and electron expressway concept are discussed.  相似文献   

2.
We describe the preparation of three-dimensional hierarchical twin-scale inverse opal (ts-IO) electrodes for dye-sensitized solar cells (DSSCs). The ts-IO TiO(2) structure was obtained from a template fabricated via the assembly of mesoscale colloidal particles (40-80 nm in diameter) in the confined geometry of a macroporous IO structure. The photovoltaic properties of ts-IO electrodes were optimized by varying the layer thickness or the size of mesopores in the mesoscale colloidal assembly. Electron transport was investigated using impedance spectroscopy. The result showed that due to the competing effects of recombination and dye adsorption, the maximum efficiency was observed at an electrode thickness of 12 μm. The electrodes of smaller mesopores diameters yielded the higher photocurrent density due to the decrease in the electron transport resistance at the TiO(2)/dye interface. A maximum efficiency of 6.90% was obtained using an electrode 12 μm thick and a mesopore diameter of 35 nm.  相似文献   

3.
Engineering of TiO(2) electrode layers is critical to guaranteeing the photoconversion efficiency of dye-sensitized solar cells (DSSCs). Recently, a novel approach has been introduced for producing TiO(2) electrodes using the inverted structures of colloidal crystals. This paper describes a facile route to producing ordered macroporous electrodes from colloidal crystal templates for DSSCs. Using concentrated colloids dispersed in a volatile medium, the colloidal crystal templates were obtained within a few minutes, and the thickness of the template was easily controlled by changing the quantity of colloidal solution deposited. Here, the effects of the structural properties of the inverse opal TiO(2) electrodes on the photovoltaic parameters of DSSCs were investigated. The photovoltaic parameters were measured as a function of pore ordering and electrode film thickness. Moreover, DSSC applications that used either liquid or viscous polymer electrolyte solutions were investigated to reveal the effects of pore size on performance of an inverse opal TiO(2) electrode.  相似文献   

4.
A new approach involving the introduction of the common cationic surfactant cetyltrimethylammonium bromide (CTAB) for modifying a rutile TiO2 film during its formation from hydrolyzed TiCl4 solution has been adopted, intending to improve the photoelectrochemical properties of the pertinent dye-sensitized solar cell. CTAB-routed films were found to consist of smaller clusters of near-spherical TiO2 particles, compared with larger clusters of long rod-shaped particles in the absence of CTAB. As a consequence, the photocurrent and photovoltage of the cell fabricated by using CTAB have increased significantly, leading to a conversion efficiency increase, compared with those of the cell prepared without CTAB. On the basis of FE-SEM, BET, and XRD analyses, the increases are attributed to decreased particle size, improved interparticle connectivity, and enhanced crystallinity of the CTAB-promoted TiO2 particles and decreased void volume in the film. Faster growth of the TiO2 film was another beneficial effect of CTAB. A mechanism is proposed for the beneficial role of CTAB during the film formation.  相似文献   

5.
We investigated the formation of bilayer inverse opal TiO(2) (io-TiO(2)) structures via post-treatment with a TiO(2) precursor solution and characterized the photovoltaic performances of the resulting electrodes for use in dye-sensitized solar cells. The post-treatment of TiO(2) inverse opals in a precursor solution grew rutile TiO(2) nanoparticles on anatase crystalline phase io-TiO(2) surfaces, resulting in anatase/rutile bilayer structures. We achieved a maximum photovoltaic conversion efficiency of 4.6% using a 25 μm thick electrode formed with the post-treated io-TiO(2) under simulated AM 1.5 light. This efficiency represents a 183% improvement over the non-post-treated io-TiO(2) electrodes. The shell thickness was controlled by the post-treatment time. The effects of shell thickness on photovoltaic performance were investigated by measuring the morphologies and electrochemical impedance of the post-treated io-TiO(2). We found that post-treatment up to a certain period of time increased the surface area and electron lifetime, but further treatment resulted in decreased area and saturated lifetimes. The optimal post-treatment time was identified, and the optimal io-TiO(2) electrodes were characterized.  相似文献   

6.
Two classes of phosphonic acid-bearing organic molecules, 2-oligothiophene phosphonic acid and omega-(2-thienyl)alkyl phosphonic acid were adopted as interface modifiers (IMs) of the TiO(2) surface, to increase its compatibility with poly(3-hexylthiophene) (P3HT). The self-assembled monolayers of these molecules on titania surface were characterized by making contact angle measurements and X-ray photoelectron spectroscopy (XPS). Atomic force microscopic (AFM) images revealed that the adsorption of IMs effectively smooths the TiO(2) surface. Both photoluminescence (PL) spectroscopy and PL lifetime measurements were made to investigate the photoinduced properties of the TiO(2)/IM/P3HT layered-junction. The PL quenching efficiency increased with the number of thiophene rings and as the alkyl chain-length in IMs decreased. Meanwhile, the decline in the PL lifetime followed a similar trend as the PL quenching efficiency. Additionally, the power conversion efficiency (PCE) of the ITO/TiO(2)/IM/P3HT/Au devices was examined by measuring their photocurrent density-applied voltage (J-V) curves. The experimental results indicated that the short-circuit current density (J(SC)) increased with the number of thiophene units and as the hydrocarbon chain-length in IMs decreased. However, the open-circuit voltage (V(OC)) of the devices slightly fell as the energy level of the highest occupied molecular orbital (HOMO) of IM decreased. The PCE of the device with 2-terthiophene phosphonic acid was 2.5 times that of the device with 10-(2-thienyl)decyl phosphonic acid.  相似文献   

7.
采用模板辅助法制备了SnO2/TiO2复合空心球,样品直径为1.5~4.0μm,比表面积达到了92.9 m^2·g^-1,复合空心球表现出优越的光散射性能.以这种复合空心球作为染料敏化太阳能电池的光阳极,电池的光电转换效率可达到7.72%,高于SnO2微米球(2.70%)和TiO2微米球(6.26%).此外,以锐钛矿型TiO2纳米晶作为底层,SnO2/TiO2复合空心球作为光散射层制备的双层结构光阳极,电池光电转换效率进一步提升至8.43%.  相似文献   

8.
The effects of deoxycholic acid (DCA) and 4-tert-butylpyridine (TBP) as additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells were investigated. DCA coadsorption improved both the photocurrent and photovoltage of the solar cells, even though it decreased the amount of dye adsorbed on the TiO2 electrode. The improved photocurrent may arise from suppression of the deactivation of the excited state via quenching processes between dye molecules or a more negative LUMO level of the dye in the presence of DCA, resulting in a high electron-injection yield from the dye into TiO2. The increased photovoltage is probably due to suppression of recombination between the injected electrons and I3- ions on the TiO2 surface (dark current). The addition of TBP to the electrolyte also markedly improved the photovoltage and fill factor of the solar cell, and consequently, the total conversion efficiency increased from 3.6% to 7.5%. FT-IR spectroscopy indicated that a large amount of TBP was adsorbed on the dye-coated TiO2 films in the presence of Li cations. This result suggests that TBP, like DCA, suppressed the dark current on the TiO2 surface, which resulted in the improved photovoltage.  相似文献   

9.
Nb-doped TiO(2) nanotube (with C(Nb) < 1 wt%) layers were successfully fabricated by self-ordered electrochemical anodization of Ti-Nb alloys. When used in dye-sensitized solar cells the efficiency enhanced by up to 30% compared to non-doped TiO(2) nanotubes. IMVS measurements indicate the beneficial effect to be due to lower recombination losses.  相似文献   

10.
In this work, we report on fabrication and characterization of dye-sensitized solar cells based on TiO(2) nanotube/nanoparticle (NT/NP) composite electrodes. TiO(2) nanotubes were prepared by anodization of Ti foil in an organic electrolyte. The nanotubes were chemically separated from the foil, ground and added to a TiO(2) nanoparticle paste, from which composite NT/NP electrodes were fabricated. In the composite TiO(2) films the nanotubes existed in bundles with a length of a few micrometres. By optimizing the amount of NT in the paste, dye-sensitized solar cells with an efficiency of 5.6% were obtained, a 10% improvement in comparison to solar cells with pure NP electrodes. By increasing the fraction of NT in the electrode the current density increased by 20% (from 11.1 to 13.3 mA cm(-2)), but the open circuit voltage decreased from 0.78 to 0.73 V. Electron transport, lifetime and extraction studies were performed to investigate this behavior. A higher fraction of NT in the paste led to more and deeper traps in the resulting composite electrodes. Nevertheless, faster electron transport under short-circuit conditions was found with increased NT content, but the electron lifetime was not improved. The electron diffusion length calculated for short-circuit conditions was increased 3-fold in composite electrodes with an optimized NT fraction. The charge collection efficiency was more than 90% over a wide range of light intensities, leading to improved solar cell performance.  相似文献   

11.
All-solid-state inorganic-organic heterojunction solar cells (HSCs) were designed and fabricated using earth-abundant element, non-toxic, low-cost SnS-sensitized mesoporous spherical TiO(2) films under ambient conditions using a solution-processable, simple, and convenient fabrication technique. SnS-HSCs show a promising photovoltaic performance, with an efficiency of 2.8% and a significantly high V(OC) of 0.85 V.  相似文献   

12.
The state of dye adsorption on TiO2 electrodes in dye-sensitized solar-cell (DSSC) systems is important for its power-conversion efficiency (PCE). We propose a non-destructive and quantitative method to evaluate the amount of adsorbed dye on TiO2 electrodes by using micro-Raman spectroscopy. The Raman peak intensity ratio of adsorbed dye to TiO2, Id/It, is defined as a dye adsorption parameter. Based on a comparison between Id/It and the amount of dye evaluated from UV–vis absorption, the quantitativity and reproducibility of our method are verified.We investigated the change of Id/It spatial distribution of TiO2 electrodes immersed in a dye solution for different time scales. The statistical analysis of Id/It distribution suggests that dyes adsorbed on TiO2 electrodes with chemical coordination increase at first, and after their saturation, dye aggregations are formed over the chemisorption layer. We also describe the effect of the Id/It distribution on PCE. From a comparison of PCE and Id/It distribution obtained from various immersion processes, it was considered that the PCE of DSSCs can be optimized by minimizing the Id/It dispersion.  相似文献   

13.
Polyaniline (PANi)-graphene composites and polyaniline-graphene/TiO2 composites were prepared by ex-situ approach. Systematic investigation was carried out to explore photovoltaic (PV) properties of PANi-graphene and PANi-graphene/TiO2 composite. The prepared composites were characterized using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Raman Spectroscopy and Ultraviolet–Visible (UV–Vis) Spectroscopy. The PV properties of dye-sensitized solar cells (DSSCs) prepared composites investigated by assembling materials in ITO/PANi-graphene/Al and ITO/PANi-graphene/TiO2/Al architecture. Different PV parameters such as short circuit current, open circuit voltage, fill factor and power conversion efficiency were determined from the (Current-Voltage) IV characteristics of PV cell. The 15 wt% PANi loaded graphene composite based PV cell shows optimized power conversion efficiency of the order 6.47%. The main accomplishment of present work is that efficiency associated with 15 wt% PANi loaded graphene composite, improved further by addition of TiO2 nanoparticles. The composite system between PANi-graphene/TiO2 for 1 wt% of TiO2 nanoparticles shows optimized power conversion efficiency of the order 8.63%.  相似文献   

14.
The thin films of TiO2 doped by Sn or Nb were prepared by sol–gel method under process control. The effects of Sn and Nb doping on the structural, optical and photo-catalytic properties of applied thin films have been studied by X-ray diffraction (XRD) high resolution transmission electron microscopy and UV–Vis absorption spectroscopy. Surface chemical state of thin films was examined by atomic X-ray photoelectron spectroscopy. XRD results suggest that adding impurities has a great effect on the crystallinity and particle size of TiO2. Titania rutile phase formation in thin film was promoted by Sn4+ addition but was inhibited by Nb5+ doping. The activity of the photocatalyst was evaluated by photocatalytic degradation kinetics of aqueous methylene blue under UV and Visible radiation. The results show that the photocatalytic activity of the Sn-doped TiO2 thin film have a larger degradation efficiency than Nb-doped TiO2 under visible light, but under UV light photocatalytic activity of the Nb-doped TiO2 thin film is better.  相似文献   

15.
Sol-gel-derived Mg(OH)(2) gel was coated onto TiO(2) nanoparticles, and the subsequent thermal topotactic decomposition of the gel formed a highly nanoporous MgO crystalline coating. The specific surface area of the electrode that was prepared from the core-shell-structured TiO(2) nanoparticles significantly increased compared with that of the uncoated TiO(2) electrode. The increase in the specific surface area of the MgO-coated TiO(2) electrode was attributed to the highly nanoporous MgO coating layer that resulted from the topotactic reaction. Dye adsorption behavior and solar cell performance were significantly enhanced by employing the MgO-coated TiO(2) electrode. Optimized coating of a MgO layer on TiO(2) nanoparticles enhanced the energy conversion efficiency as much as 45% compared to that of the uncoated TiO(2) electrode. This indicates that controlling the extrinsic parameters such as the specific surface area is very important to improve the energy conversion efficiency of TiO(2)-based solar cells.  相似文献   

16.
The incorporation of nano-crystalline semiconductors with novel kinds of ordered microstructure is a very important area of research in the field of dye sensitized solar cells. A sol–gel method involving hydrolysis of titanium isopropoxide was used to form TiO2 nanoparticles on the surface of SiO2 spheres. In this process, 1, 5, or 10 wt% of SnCl2.2H2O was added to the sol–gel solution. To prepare TiO2/SnO2 nanoparticles with a half hollow sphere structure, SiO2 was removed with NaOH solution. The crystal phase, crystal shape, and surface properties of the metal oxide nanocrystals were studied by x-ray diffraction and scanning electron microscopy. The photovoltaic performance of the TiO2/SnO2 nanoparticles with half hollow sphere structures was measured. The dye sensitized solar cell using nanoporous TiO2 as electrode materials exhibits an overall conversion efficiency of 7.36% with a light intensity of 100 mW/cm2. The short circuit photocurrent (Isc), open circuit photovoltage (Voc), and conversion efficiency (η) of these solar cells were improved over conventional materials.  相似文献   

17.
In this study a process has been introduced to replace traditional liquid or solid electrolyte coatings on dye-sensitized photoelectrode in solar cells. This process has more efficient diffusion of electrolyte, hence higher sensitivity. Better interfacial contact between polymer electrolyte and TiO2 photoelectrode had improved electrochemical response and ionic conductivity of cell. Conductivity of this electrode was 9.33 × 10−3 S cm−1 (at room temperature), which is much higher than the using traditional process for addition of electrolytes. It has 0.68 V open-circuit voltage and 3.19 mA cm−2 short-circuit current density. Energy conversion efficiency of this cell was about 37% higher than the cell developed with traditional processes under constant light intensity (45 mW cm−2).  相似文献   

18.
The high-nuclear cluster compound Na48[HxMo368O1032(H2O)240(SO4)48]·ca.1000H2O (denoted as {Mo368}) represents the known nanoscale hedgehog-type cluster anion with the diameter of approximately 6 nm. Herein, a TiO2@{Mo368} composite was prepared through a sol–gel process for the first time. SEM, XPS, and UV–vis spectra were employed to characterize their chemical composition and structures. Meanwhile, the as-obtained composite was further mixed with P25 (Degussa P25 titania photocatalyst) then applied as the photoanodes of dye-sensitized solar cells (DSSCs); the results showed that DSSCs with the P25-TiO2@{Mo368}-based photoanodes exhibited better performance than that with pure P25-based photoanodes, which was due to less carrier recombination and longer electron lifetime in the former DSSCs by the results from analysis of dark current measurement, electrochemical impedance spectroscopy, and open-circuit voltage decay curve.  相似文献   

19.
Ultrathin SnO(2) layers were deposited on FTO substrate by the layer-by-layer (LbL) self-assembly technique utilizing negatively charged 2.5 nm sized SnO(2) nanoparticles (NPs) and cationic poly(allylamine hydrochloride) (PAH). For the construction of dye-sensitized solar cells (DSC), the bulk TiO(2) layer was deposited over the (PAH/SnO(2))(n) (n = 1-10) and subsequently calcined at 500 °C to remove organic components. With introducing four layers of self-assembled SnO(2) interfacial layer (IL), the short circuit current density (J(sc)) of DSCs was increased from 8.96 to 10.97 mA/cm(2), whereas the open circuit voltage (V(oc)) and fill factor (FF) were not appreciably changed. Consequently, photovoltaic conversion efficiency (η) was enhanced from 5.43 to 6.57%. Transient photoelectron spectroscopic analyses revealed that the ultrathin SnO(2) layer considerably increased the electron diffusion coefficient (D(e)) in TiO(2) layer, but the electron lifetime (τ(e)) was decreased unexpectedly. The observed unusual photovoltaic properties would be caused by the unique conduction band (CB) location of the SnO(2), inducing the cascadal energy band matching among the CBs of TiO(2), SnO(2), and FTO.  相似文献   

20.
Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots   总被引:2,自引:0,他引:2  
We report nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. InAs quantum dots of different sizes were synthesized and incorporated in solar cell devices. Efficient charge transfer from InAs quantum dots to TiO2 particles was achieved without deliberate modification of the quantum dot capping layer. A power conversion efficiency of about 1.7% under 5 mW/cm2 was achieved; this is relatively high for a nanocrystalline metal oxide solar cell sensitized with presynthesized quantum dots, but this efficiency could only be achieved at low light intensity. At one sun, the efficiency decreased to 0.3%. The devices are stable for at least weeks under room light in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号