首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colloidal CdSe nanoplatelets are considered to be excellent candidates for many applications in nanotechnology. One of the current challenges is to self‐assemble these colloidal quantum wells into large ordered structures to control their collective optical properties. We describe a simple and robust procedure to achieve controlled face‐to‐face self‐assembly of CdSe nanoplatelets into micron‐long polymer‐like threads made of up to ~1000 particles. These structures are formed by addition of oleic acid to a stable colloidal dispersion of platelets, followed by slow drying and re‐dispersion. We could control the average length of the CdSe nanoplatelet threads by varying the amount of added oleic acid. These 1‐dimensional structures are flexible and feature a “living polymer” character because threads of a given length can be further grown through the addition of supplementary nanoplatelets at their reactive ends.  相似文献   

2.
李玉禾  胡海龙 《应用化学》2017,34(8):918-927
片状二维镍纳米材料具有较高的形状各异性,在催化、磁记录以及生物探测方面具有重要的应用价值,因此寻找一种简单,成本低的方法制备表面无活性剂的片状镍纳米材料显得尤为重要。在没有有机表面活性剂和形貌控制剂的条件下,在氟掺杂氧化铟锡(FTO)导电玻璃表面,通过水热制备得到金属镍纳米薄片。系统地研究了反应条件对产物形貌的影响,发现镍源、氢氧化钠、氨水的浓度以及反应温度对纳米镍的形貌有较大的影响。只有在合适的氨水和氢氧化钠浓度共同存在下,才能获得具有较大的特征长度以及较薄的近二维结构的六边形镍金属钠米薄片。经过条件优化,制备得到的厚度约为10 nm,横向特征长度超过1μm金属镍纳米薄片。经过分析认为,体系的p H值及温度影响了反应速度,最终导致产物的形貌受到影响,在p H值约为10的条件下,氨水对镍离子的络合作用对镍纳米薄片的二维生长具有一定的促进作用。  相似文献   

3.
Photochemical etching of CdSe nanoplatelets was studied to establish a relationship between the nanocrystal surface and the photochemical activity of an exciton. Nanoplatelets were synthesized in a mixture of octylamine and oleylamine for the wurtzite (W) lattice or in octadecene containing oleic acid for the zinc-blende (ZB) lattice. For photochemical etching, nanoplatelets were dispersed in chloroform containing oleylamine and tributylphosphine in the absence or presence of oleic acid and then irradiated with light at the band-edge absorption maxima. Etching phenomena were characterized using UV-vis absorption spectroscopy and transmission electron microscopy. The absorption spectra of both W and ZB CdSe nanoplatelets showed that the exciton was confined in one dimension along the thickness. However, the two nanoplatelets presented different etching kinetics and erosion patterns. The rate of etching for W CdSe nanoplatelets was much faster than that for ZB nanoplatelets. Small holes were uniformly perforated on the planar surface of W nanoplatelets, whereas the corners and edges of ZB nanoplatelets were massively eroded without a significant perforation on the planar surface. This suggests that the amine-passivated surface of trivalent cadmium atoms on CdSe nanoplatelets is photochemically active, but the carboxylate-passivated surface of divalent cadmium atoms is not. Hence, the ligand, which induces the growth of W or ZB CdSe nanoplatelets, mediates the surface-dependent photochemical etching. This result implies that an electron-hole pair can be extracted from the planar surface of amine-passivated W nanoplatelets but from the corners and edges of carboxylate-passivated ZB nanoplatelets.  相似文献   

4.
Here, we elucidate a double-lamellar-template pathway for the formation of CdSe quantum belts. The lamellar templates form initially by dissolution of the CdX(2) precursors in the n-octylamine solvent. Exposure of the precursor templates to selenourea at room temperature ultimately affords (CdSe)(13) nanoclusters entrained within the double-lamellar templates. Upon heating, the nanoclusters are transformed to CdSe quantum belts having widths, lengths, and thicknesses that are predetermined by the dimensions within the templates. This template synthesis is responsible for the excellent optical properties exhibited by the quantum belts. We propose that the templated-growth pathway is responsible for the formation of the various flat, colloidal nanocrystals recently discovered, including nanoribbons, nanoplatelets, nanosheets, and nanodisks.  相似文献   

5.
ZnO/Zn-Al layered double hydroxide (ZnO/Zn-Al LDH) hierarchical architecture, a new type of ZnO-based heterostructure, has been synthesized directly on an Al substrate via a facile solution phase process. The firecracker-like heterostructures consist of uniform ZnO nanorods orderly standing at the edges of two-dimensional (2D) surfaces of Zn-Al LDH nanoplatelets. Experimental result obtained from the early growth stage indicates that the underlying Zn-Al LDH nanoplatelet arrays are well constructed with their (00l) planes perpendicular to the surface of Al substrate. We propose that the "edge effect" of Zn-Al LDH and the "lattice match" between ZnO and Zn-Al LDH are vital to the growth of such heterostructures. The effects of total solution volume and NH3.H2O concentration on the formation of heterostructures are investigated. It is found that other LDH-based complex structures can also be achieved controllably by varying the mentioned experimental factors. Our work is the first demonstration of fabricating intricate ZnO/Zn-Al LDH heterostructures as well as well-defined Zn-Al LDH arrays on an Al substrate, for which several promising applications such as optoelectronics, biosensors, and catalysis can be envisioned.  相似文献   

6.
Inorganic nanoplatelet reinforced polymer films were fabricated via alternate layer-by-layer assembly of layered double hydroxide (LDH) nanoplatelets with poly(vinyl alcohol) (PVA), which showed largely enhanced strength and good ductility simultaneously.  相似文献   

7.
This paper presents a study on wave propagation in rotating functionally graded (FG) microbeams reinforced by graphene nanoplatelets (GPLs). The graphene nanoplatelets (GPLs) are considered to distribute in the diameter direction of the micro-beam in a gradient pattern, which leads to the functionally graded structure. By using the Halpin-Tsai micromechanics model and the rule of mixture, the effective material properties of the microbeam are determined. According to the Euler-Bernoulli beam theory and nonlocal elasticity theory, the rotating microbeams are modeled. A comprehensive parametric study is conducted to examine the effects of rotating speed, GPL distribution pattern, GPL length-to-thickness ratio, GPL length-to-width ratio, and nonlocal scale on the wavenumber, phase speed and group speed of the microbeam. The research findings can play an important role on the design of rotating graphene nanoplatelet (GPL) reinforced microbeams for better structural performance.  相似文献   

8.
By manipulating processing conditions, three levels of exfoliation of synthetic α-zirconium phosphate (α-ZrP) nanoplatelets in epoxy matrices have been achieved. Transmission electron microscopy and wide angle X-ray diffraction were utilized to confirm the three different levels of exfoliation of nanoplatelets in epoxy/α-ZrP nanocomposites. As expected, it was found that modulus and strength of the nanocomposite are affected by how well the nanoplatelets disperse. It was also found that the operative fracture mechanisms depend strongly on the state of the nanoplatelets dispersion. The crack deflection mechanism, which leads to a tortuous path crack growth, was only observed for poorly dispersed nanocomposites. Delamination of intercalated nanoplatelets and crack deflection were observed in a moderately dispersed system. In the case of fully exfoliated system, the crack only propagated in a straight fashion, which indicates that the fully exfoliated individual nanoplatelet can not affect the propagation of crack at all. The implication of the present findings for structural applications of polymer nanocomposites is discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1459–1469, 2007  相似文献   

9.
Dispersed silver/palladium (Ag/Pd) nanoplatelets were prepared by delivering in parallel solutions of mixed metal nitrates and L-ascorbic acid into a nitric acid solution containing Arabic gum. The shape and size of bimetallic nanoparticles varied with the silver/palladium weight ratio and the concentration of nitric acid. The optimum conditions for platelets formation were a palladium content of ~2.0 wt.% and nitric acid concentrations above 1.0 mol dm(-3). The data presented show that both parameters play a critical role in the nucleation and growth of AgPd particles. A mechanism explaining the formation of the bimetallic nanoplatelets is proposed.  相似文献   

10.
Soluble CdSe quantum wires are prepared by the solution-liquid-solid mechanism, using monodisperse bismith nanoparticles to catalyze wire growth. The quantum wires have micrometer lengths, diameters in the range of 5-20 nm, and diameter distributions of +/-10-20%. Spectroscopically determined wire band gaps compare closely to those calculated by the semiemipirical pseudopotential method, confirming 2D quantum confinement. The diameter dependence of the quantum wire band gaps is compared to that of CdSe quantum dots and rods. Quantum rod band gaps are shown to be delimited by the band gaps of dots and wires of like diameter, for short and long rods, respectively. The experimental data suggest that a length of ca. 30 nm is required for the third dimension of quantum confinement to fully vanish in CdSe rods. That length is about six times the bulk CdSe exciton Bohr radius.  相似文献   

11.
Cadmium oxide (CdO) nanoplatelets were synthesized by thermal decomposition of cadmium malonate. The synthesized CdO nanoplatelets were characterized by X-ray diffraction (XRD); from the XRD analysis, it is clear that the phase structure of CdO nanoplatelets was found to be face-centered cubic with the average crystalline size of 40–50 nm. FT-IR analysis shows the presence of surface carboxyl and hydroxyl groups on to the CdO nanoplatelets. From DRS-UV–Vis analysis, both the direct and indirect band gaps of the CdO nanoplatelets were found to be 2.0 and 1.67 eV, respectively. From the FE-SEM analysis, the morphology of the synthesized CdO was found to be nanoplatelets, which were randomly agglomerated. Further, HR-TEM was used to confirm the formation of nanoplatelets. The electrochemical sensing property of CdO nanoplatelets was carried out by cyclic voltammetry (CV) by coating CdO nanoplatelets on Glassy carbon electrode (GCE) and using it as working electrode for sensing of catechol. The enhanced electrochemical behaviour is mainly attributed to the nanometer dimensions and surface hydroxyl groups on the CdO nanoplatelets. Chronoamperometry (CA) was used to determine the sensitivity and repeatability of the modified electrode. The modified electrode shows linear range of catechol concentration between 7.5 × 10?6 and 1.5 × 10?4 M with sensitivity of 9.8 nA μM?1.  相似文献   

12.
Well-aligned arrays of CuO nanoplatelets   总被引:4,自引:0,他引:4  
This paper reports well-aligned arrays of CuO nanoplatelets synthesized through a hydrothermal route without template's assistance. The surface of well-aligned arrays of CuO nanoplatelets looks like a wall. These nanoplatelets, possessing four clear edges, are 50-80 nm in thickness, 150-250 nm in width, and 0.8-1.5 microm in length. Electron microscopic detection shows that the nanoplatelet grows along the [010] direction. The Ostwald ripening mechanism has been used to describe the growth of CuO nanoplatelets. In addition, the optic and electrochemical properties of as-obtained products have been discussed. And the arrays of CuO nanoplatelets exhibit the blue shift in UV-visible spectra, a slow capacity fading rate, and a relatively high Coulombic efficiency in charge-discharge process.  相似文献   

13.
14.
Summary: The MD technique was used to investigate the fracture behavior in fully exfoliated layered silicate (nanoplatelet)‐polymer nanocomposites. MD results reveal that the addition of the nanoplatelets can improve the fracture strength of polymers. The interactions between the surface of the nanoplatelets and the segments of the polymer, and the relaxation time of polymer chains have significant influences on the fracture strength of the polymer. For polymers with Tg below room temperature, such as polyurethane, or close to room temperature, such as nylon, the nanoplatelets are always working for the enhancement of the mechanical properties. However, for polymers with Tg above room temperature, such as epoxy and polystyrene, the addition of the nanoplatelets is not working well for toughening these polymers. If the nanoplatelets are to enhance the mechanical properties of these polymers, it is necessary to build up a stress relaxation interface between the polymer and the nanoplatelet in order to reduce the effect of the difference between the relaxation time of nanofillers and that of polymers.

Force per area versus distance curves as a function of the difference of the relaxation times of the nanoplatelets and polymer chains.  相似文献   


15.
We theoretically discuss, using density-functional theory, the phase stability of nematic and smectic ordering in a suspension of platelets of the same thickness but with a high polydispersity in diameter, and study the influence of polydispersity on this stability. The platelets are assumed to interact like hard objects, but additional soft attractive and repulsive interactions, meant to represent the effect of depletion interactions due to the addition of nonabsorbing polymer, or of screened Coulomb interactions between charged platelets in an aqueous solvent, respectively, are also considered. The aspect (diameter-to-thickness) ratio is taken to be very high, in order to model solutions of mineral platelets recently explored experimentally. In this regime a high degree of orientational ordering occurs; therefore, the model platelets can be taken as completely parallel and are amenable to analysis via a fundamental-measure theory. Our focus is on the nematic versus smectic phase interplay, since a high degree of polydispersity in diameter suppresses the formation of the columnar phase. When interactions are purely hard, the theory predicts a continuous nematic-to-smectic transition, regardless of the degree of diameter polydispersity. However, polydispersity enhances the stability of the smectic phase against the nematic phase. Predictions for the case where an additional soft interaction is added are obtained using mean-field perturbation theory. In the case of the one-component fluid, the transition remains continuous for repulsive forces, and the smectic phase becomes more stable as the range of the interaction is decreased. The opposite behavior with respect to the range is observed for attractive forces, and in fact the transition becomes of first order below a tricritical point. Also, for attractive interactions, nematic demixing appears, with an associated critical point. When platelet polydispersity is introduced the tricritical temperature shifts to very high values.  相似文献   

16.
Light-harvesters with long-lived excited states are desired for efficient solar energy conversion systems. Many solar-to-fuel conversion reactions, such as H2 evolution and CO2 reduction, require multiple sequential electron transfer processes, which leads to a complicated situation that excited states involves not only excitons (electron-hole pairs) but also multi-excitons and charged excitons. While long-lived excitons can be obtained in various systems (e.g., semiconductor nanocrystals), multi-excitons and charged excitons are typically shorted-lived due to nonradiative Auger recombination pathways whereby the recombination energy of an exciton is quickly transferred to the third carrier on a few to hundreds of picoseconds timescale. In this work, we report a study of excitons, trions (an exciton plus an additional charge), and biexcitons in CdSe/CdTe colloidal quantum wells or nanoplatelets. The typeⅡ band alignment effectively separates electrons and holes in space, leading to a single exciton lifetime of 340 ns which is ~2 order of magnitudes longer than that in plane CdSe nanoplatelets. More importantly, the electron-hole separation also dramatically slows down Auger decay, giving rise to a trion lifetime of 70 ns and a biexciton lifetime of 11 ns, among the longest values ever reported for colloidal nanocrystals. The long-lived exciton, trion, and biexciton states, combined with the intrinsically strong light-absorption capability of two-dimensional systems, enable the CdSe/CdTe type-Ⅱ nanoplatelets as promising light harvesters for efficient solar-to-fuel conversion reactions.  相似文献   

17.
High-selectivity, uniform three-dimensional (3D) flower-like bismuth telluride (Bi(2)Te(3)) nanocrystals consisting of few-quintuple-layer nanoplatelets with a thickness down to 4.5 nm were synthesized for the first time by a facile, one-pot polyol method with acetic acid as the structure-director. Micrometre-sized 2D films and honeycomb-like spheres can be obtained using the uniform 3D Bi(2)Te(3) nanocrystals as building blocks.  相似文献   

18.
Na‐ion batteries have been attracting intensive investigations as a possible alternative to Li‐ion batteries. Herein, we report the synthesis of SnS2 nanoplatelet@graphene nanocomposites by using a morphology‐controlled hydrothermal method. The as‐prepared SnS2/graphene nanocomposites present a unique two‐dimensional platelet‐on‐sheet nanoarchitecture, which has been identified by scanning and transmission electron microscopy. When applied as the anode material for Na‐ion batteries, the SnS2/graphene nanosheets achieved a high reversible specific sodium‐ion storage capacity of 725 mA h g?1, stable cyclability, and an enhanced high‐rate capability. The improved electrochemical performance for reversible sodium‐ion storage could be ascribed to the synergistic effects of the SnS2 nanoplatelet/graphene nanosheets as an integrated hybrid nanoarchitecture, in which the graphene nanosheets provide electronic conductivity and cushion for the active SnS2 nanoplatelets during Na‐ion insertion and extraction processes.  相似文献   

19.
BACKGROUND: Laser light irradiation is assumed to have biostimulating effect in various cell types. However, there is still a lack of information concerning response of blood platelets to laser light irradiation. METHODS: In our study we used flow cytometry to monitor the effect of a green Nd-YAG laser (532 nm, 30 mW) irradiation on platelet activation and the expression of activated GPIIbIIIa glycoprotein complex (fibrinogen receptor) of whole blood platelets stained with fluorolabelled monoclonal antibody PAC-1. Also the formation of platelet microparticles and aggregates in a population of whole blood platelets following such irradiation was evaluated. RESULTS: Effects of laser light on platelet activation and reactivity were significant over a wide range of applied energies (p<0.01). While low and medium laser light energies (18 and 54 J) increased platelet activation, the irradiation with a high-energy laser light (108 J) resulted in depressed platelet reactivity and attenuated platelet response to activators. In addition, laser light irradiation had significant influence on the formation of platelet microparticles in either resting (p<0.05) or ADP-activated (p<0.05) platelets, while no significant effect was observed in collagen-activated platelets. On the other hand, laser light irradiation significantly increased the formation of platelet aggregates both in resting (p<0.01) and agonists-activated (p<0.05) platelets. CONCLUSIONS: Our results clearly point that the laser light irradiation of blood platelets can trigger signal transduction, leading to platelet activation, as well as the gradual loss of natural platelet reactivity and platelets' ability to respond to activating agents.  相似文献   

20.
This paper is focused on the temperature-dependent synthesis of gold nanotriangles in a vesicular template phase, containing phosphatidylcholine and AOT, by adding the strongly alternating polyampholyte PalPhBisCarb.

UV-vis absorption spectra in combination with TEM micrographs show that flat gold nanoplatelets are formed predominantly in the presence of the polyampholyte at 45°C. The formation of triangular and hexagonal nanoplatelets can be directly influenced by the kinetic approach, i.e., by varying the polyampholyte dosage rate at 45°C. Corresponding zeta potential measurements indicate that a temperature-dependent adsorption of the polyampholyte on the {111} faces will induce the symmetry breaking effect, which is responsible for the kinetically controlled hindered vertical and preferred lateral growth of the nanoplatelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号