首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
An integrated view of protein structure, dynamics, and function is emerging, where proteins are considered as dynamically active assemblies and internal motions are closely linked to function such as enzyme catalysis. Further, the motion of solvent bound to external regions of protein impacts internal motions and, therefore, protein function. Recently, we discovered a network of protein vibrations in enzyme cyclophilin A, coupled to its catalytic activity of peptidyl-prolyl cis-trans isomerization. Detailed studies suggest that this network, extending from surface regions to active site, is a conserved part of enzyme structure and has a role in promoting catalysis. In this report, theoretical investigations of concerted conformational fluctuations occurring on microsecond and longer time scales within the discovered network are presented. Using a new technique, kinetic energy was added to protein vibrational modes corresponding to conformational fluctuations in the network. The results reveal that protein dynamics promotes catalysis by altering transition state barrier crossing behavior of reaction trajectories. An increase in transmission coefficient and number of productive trajectories with increasing amounts of kinetic energy in vibrational modes is observed. Variations in active site enzyme-substrate interactions near transition state are found to be correlated with barrier recrossings. Simulations also showed that energy transferred from first solvation shell to surface residues impacts catalysis through network fluctuations. The detailed characterization of network presented here indicates that protein dynamics plays a role in rate enhancement by enzymes. Therefore, coupled networks in enzymes have wide implications in understanding allostericity and cooperative effects, as well as protein engineering and drug design.  相似文献   

3.
4.
Many enzymes catalyze reactions with multiple chemical steps, requiring the stabilization of multiple transition states during catalysis. Such enzymes must strike a balance between the conformational reorganization required to stabilize multiple transition states of a reaction and the confines of a preorganized active site in the polypeptide tertiary structure. Here we investigate the compromise between structural reorganization during the catalytic process and preorganization of the active site for a multistep enzyme-catalyzed reaction, the hydrolysis of esters by the Ser-His-Asp/Glu catalytic triad. Quantum mechanical transition states were used to generate ensembles of geometries that can catalyze each individual step in the mechanism. These geometries are compared to each other by superpositions of catalytic atoms to find "consensus" geometries that can catalyze all steps with minimal rearrangement. These consensus geometries are found to be excellent matches for the natural active site. Preorganization is therefore found to be the major defining characteristic of the active site, and reorganizational motions often proposed to promote catalysis have been minimized. The variability of enzyme active sites observed by X-ray crystallography was also investigated empirically. A catalog of geometrical parameters relating active site residues to each other and to bound inhibitors was collected from a set of crystal structures. The crystal-structure-derived values were then compared to the ranges found in quantum mechanically optimized structures along the entire reaction coordinate. The empirical ranges are found to encompass the theoretical ranges when thermal fluctuations are taken into account. Therefore, the active sites are preorganized to a geometry that can be objectively and quantitatively defined as minimizing conformational reorganization while maintaining optimal transition state stabilization for every step during catalysis. The results provide a useful guiding principle for de novo design of enzymes with multistep mechanisms.  相似文献   

5.
Through characterization of the solvent isotope effect on protein dynamics, we have examined determinants of the rate limitation to enzyme catalysis. A global conformational change in Ribonuclease A limits the overall rate of catalytic turnover. Here we show that this motion is sensitive to solvent deuterium content; the isotope effect is 2.2, a value equivalent to the isotope effect on the catalytic rate constant. We further demonstrate that the protein motion possesses a linear proton inventory plot, indicating that a single proton is transferred in the transition state. These results provide compelling evidence for close coupling between enzyme dynamics and function and demonstrate that characterization of the transition state for protein motion in atomic detail is experimentally accessible.  相似文献   

6.
Recent studies in single-molecule enzyme kinetics reveal that the turnover statistics of a single enzyme is governed by the waiting time distribution that decays as mono-exponential at low substrate concentration and multi-exponential at high substrate concentration. The multi-exponentiality arises due to protein conformational fluctuations, which act on the time scale longer than or comparable to the catalytic reaction step, thereby inducing temporal fluctuations in the catalytic rate resulting in dynamic disorder. In this work, we study the turnover statistics of a single enzyme in the presence of inhibitors to show that the multi-exponentiality in the waiting time distribution can arise even when protein conformational fluctuations do not influence the catalytic rate. From the Michaelis-Menten mechanism of inhibited enzymes, we derive exact expressions for the waiting time distribution for competitive, uncompetitive, and mixed inhibitions to quantitatively show that the presence of inhibitors can induce dynamic disorder in all three modes of inhibitions resulting in temporal fluctuations in the reaction rate. In the presence of inhibitors, dynamic disorder arises due to transitions between active and inhibited states of enzymes, which occur on time scale longer than or comparable to the catalytic step. In this limit, the randomness parameter (dimensionless variance) is greater than unity indicating the presence of dynamic disorder in all three modes of inhibitions. In the opposite limit, when the time scale of the catalytic step is longer than the time scale of transitions between active and inhibited enzymatic states, the randomness parameter is unity, implying no dynamic disorder in the reaction pathway.  相似文献   

7.
In recent papers, there has been a lively exchange concerning theories for enzyme catalysis, especially the role of protein dynamics/pre-chemistry conformational changes in the catalytic cycle of enzymes. Of particular interest is the notion that substrate-induced conformational changes that assemble the polymerase active site prior to chemistry are required for DNA synthesis and impact fidelity (i.e., substrate specificity). High-resolution crystal structures of DNA polymerase β representing intermediates of substrate complexes prior to the chemical step are available. These structures indicate that conformational adjustments in both the protein and substrates must occur to achieve the requisite geometry of the reactive participants for catalysis. We discuss computational and kinetic methods to examine possible conformational change pathways that lead from the observed crystal structure intermediates to the final structures poised for chemistry. The results, as well as kinetic data from site-directed mutagenesis studies, are consistent with models requiring pre-chemistry conformational adjustments in order to achieve high fidelity DNA synthesis. Thus, substrate-induced conformational changes that assemble the polymerase active site prior to chemistry contribute to DNA synthesis even when they do not represent actual rate-determining steps for chemistry.  相似文献   

8.
The origin of the catalytic power of enzymes with a meta-stable native state,e.g.molten globular state,is an unsolved challenging issue in biochemistry.To help understand the possible differences between this special class of enzymes and the typical ones,we report here computer simulations of the catalysis of both the well-folded wild-type and the molten globular mutant of chorismate mutase.Using the ab initio quantum mechanical/molecular mechanical minimum free-energy path method,we determined the height of reaction barriers that are in good agreement with experimental measurements.Enzyme-substrate interactions were analyzed in detail to identify factors contributing to catalysis.Computed angular order parameters of backbone N–H bonds and side-chain methyl groups suggested site-specific,non-uniform rigidity changes of the enzymes during catalysis.The change of conformational entropy from the ground state to the transition state revealed distinctly contrasting entropy/enthalpy compensations in the dimeric wild-type enzyme and its molten globular monomeric variant.A unique catalytic strategy was suggested for enzymes that are natively molten globules:some may possess large conformational flexibility to provide strong electrostatic interactions to stabilize the transition state of the substrate and compensate for the entropy loss in the transition state.The equilibrium conformational dynamics in the reactant state were analyzed to quantify their contributions to the structural transitions enzymes needed to reach the transition states.The results suggest that large-scale conformational dynamics make important catalytic contributions to sampling conformational regions in favor of binding the transition state of substrate.  相似文献   

9.
(15)N relaxation dispersion experiments were applied to the isolated N-terminal SH3 domain of the Drosophila protein drk (drkN SH3) to study microsecond to second time scale exchange processes. The drkN SH3 domain exists in equilibrium between folded (F(exch)) and unfolded (U(exch)) states under nondenaturing conditions in a ratio of 2:1 at 20 degrees C, with an average exchange rate constant, k(ex), of 2.2 s(-1) (slow exchange on the NMR chemical shift time scale). Consequently a discrete set of resonances is observed for each state in NMR spectra. Within the U(exch) ensemble there is a contiguous stretch of residues undergoing conformational exchange on a micros/ms time scale, likely due to local, non-native hydrophobic collapse. For these residues both the F(exch) <--> U(exch) conformational exchange process and the micros/ms exchange event within the U(exch) state contribute to the (15)N line width and can be analyzed using CPMG-based (15)N relaxation dispersion measurements. The contribution of both processes to the apparent relaxation rate can be deconvoluted numerically by combining the experimental (15)N relaxation dispersion data with results from an (15)N longitudinal relaxation experiment that accurately quantifies exchange rates in slow exchanging systems (Farrow, N. A.; Zhang, O.; Forman-Kay, J. D.; Kay, L. E. J. Biomol. NMR 1994, 4, 727-734). A simple, generally applicable analytical expression for the dependence of the effective transverse relaxation rate constant on the pulse spacing in CPMG experiments has been derived for a two-state exchange process in the slow exchange limit, which can be used to fit the experimental data on the global folding/unfolding transition. The results illustrate that relaxation dispersion experiments provide an extremely sensitive tool to probe conformational exchange processes in unfolded states and to obtain information on the free energy landscape of such systems.  相似文献   

10.
Redox active enzymes can be adsorbed onto electrode surfaces to catalyze the interconversion of oxidized and reduced substrates in solution, driven by the supply or removal of electrons by the electrode. The catalytic current is directly proportional to the rate of enzyme turnover, and its dependence on the electrode potential can be exploited to define both the kinetics and thermodynamics of the enzyme's catalytic cycle. However, observed electrocatalytic voltammograms are often complex because the identity of the rate limiting step changes with the electrode potential and under different experimental conditions. Consequently, extracting mechanistic information requires that accurate models be constructed to deconvolute and analyze the observed behavior. Here, a basic model for catalysis by an adsorbed enzyme is described. It incorporates substrate mass transport, enzyme kinetics, and interfacial electron transport, and it accurately reproduces experimentally recorded voltammograms from the oxidation of NADH by subcomplex Ilambda (the hydrophilic subcomplex of NADH:ubiquinone oxidoreductase), under a range of conditions. Mass transport is imposed by a rotating disk electrode and described by the Levich equation. Interfacial electron transport is controlled by the electrode potential and characterized by a dispersion of rate constants, according to the model of Léger and co-workers. Here, the Michaelis-Menten equation is used for the enzyme kinetics, but our methodology can also be readily applied to derive and apply analogous equations relating to alternative enzyme mechanisms. Therefore, our results are highly relevant to the interpretation of electrocatalytic voltammograms for adsorbed enzymes in general.  相似文献   

11.
Intensified searching: In enzymes, conformational dynamics are linked to the catalytic reaction coordinate. A novel analytical approach was used to monitor catalysis-linked dynamics in chymotrypsin, revealing that in some enzymes, catalysis is promoted by intensified, but undirected conformational sampling after substrate binding.  相似文献   

12.
Recently developed carbon transverse relaxation dispersion experiments (Skrynnikov, N. R.; et al. J. Am. Chem. Soc. 2001, 123, 4556-4566) were applied to the study of millisecond to microsecond time scale motions in a cavity mutant of T4 lysozyme (L99A) using methyl groups as probes of dynamics. Protein expressed in E. coli cells with (13)CH(3)-pyruvate as the sole carbon source contained high levels of (13)C enrichment at a total of 80 Val gamma, Leu delta, Ile gamma (2), Ala beta, and Met epsilon methyl positions with little extraneous incorporation. Data for 72 methyl groups were available for analysis. Dispersion profiles with large amplitudes were measured for many of these residues and were well fit to a two-state exchange model. The interconversion rates and populations of the states, obtained from fitting relaxation dispersion profiles of each individual probe, were remarkably homogeneous and data for nearly all methyl groups in the protein could be collectively fit to a single cooperative conformational transition. The present study demonstrates the general applicability of methyl relaxation dispersion measurements for the investigation of millisecond time scale protein motions at a large number of side-chain positions. Potential artifacts associated with the experiments are described and methods to minimize their effects presented. These experiments should be particularly well suited for probing dynamics in high molecular weight systems due to the favorable NMR spectroscopic properties of methyl groups.  相似文献   

13.
Structure-based drug design relies on static protein structures despite significant evidence for the need to include protein dynamics as a serious consideration. In practice, dynamic motions are neglected because they are not understood well enough to model, a situation resulting from a lack of explicit experimental examples of dynamic receptor-ligand complexes. Here, we report high-resolution details of pronounced ~1 ms time scale motions of a receptor-small molecule complex using a combination of NMR and X-ray crystallography. Large conformational dynamics in Escherichia coli dihydrofolate reductase are driven by internal switching motions of the drug-like, nanomolar-affinity inhibitor. Carr-Purcell-Meiboom-Gill relaxation dispersion experiments and NOEs revealed the crystal structure to contain critical elements of the high energy protein-ligand conformation. The availability of accurate, structurally resolved dynamics in a protein-ligand complex should serve as a valuable benchmark for modeling dynamics in other receptor-ligand complexes and prediction of binding affinities.  相似文献   

14.
15.
Enzymes are biomacromolecules responsible for the abundant chemical biotransformations that sustain life. Recently, biochemists have discovered that multiple conformations and numerous parallel paths are involved during the processes catalyzed by enzymes. It is plausible that the entire macromolecular scaffold is involved in catalysis via cooperative motions that result in incredible catalytic efficiency. Moreover, some enzymes can very strongly bind the transition state with an association constant of up to 1024 M-1, suggesting that covalent bond formation is a possible process during the conversion of the transition state in enzyme catalysis, in addition to the concatenation of noncovalent interactions. Supramolecular chemistry provides fundamental knowledge about the relationships between the dynamic structures and functions of organized molecules. By tak-ing advantage of supramolecular concepts, numerous supramolecular enzyme mimics with complex and hierarchical structures have been designed and investigated. Through the study of supramolecular enzyme models, a great deal of information to aid our understanding of the mechanism of catalysis by natural enzymes has been acquired. With the development of supramolec-ular artificial enzymes, it is possible to replicate the features of natural enzymes with regards to their constitutional complexity and cooperative motions, and eventually decipher the conformation-based catalytic mystery of natural enzymes.  相似文献   

16.
Enzyme-mediated catalysis is attributed to enzyme–substrate interactions, with models such as “induced fit” and “conformational selection” emphasizing the role of protein conformational transitions. The dynamic nature of the protein structure, thus, plays a crucial role in molecular recognition and substrate binding. As large-scale protein motions are coupled to water motions, hydration dynamics play a key role in protein dynamics, and hence, in enzyme catalysis. Here, microfluidic techniques and time-dependent fluorescence Stokes shift (TDFSS) measurements are employed to elucidate the role of nanoscopic water dynamics in the interaction of an enzyme, α-Chymotrypsin (CHT), with a substrate, Ala-Ala-Phe-7-amido-4-methylcoumarin (AMC) in the cationic reverse micelles of benzylhexadecyldimethylammonium chloride (BHDC/benzene) and anionic reverse micelles of sodium bis(2-ethylhexyl)sulfosuccinate (AOT/benzene). The kinetic pathways unraveled from the microfluidic setup are consistent with the “conformational selection” fit for the interaction of CHT with AMC in the cationic reverse micelles, whereas an “induced fit” mechanism is indicated for the anionic reverse micelles. In the cationic reverse micelles of BHDC, faster hydration dynamics (≈550 ps) aid the pathway of “conformational selection”, whereas in the anionic reverse micelles of AOT, the significantly slower dynamics of hydration (≈1600 ps) facilitate an “induced fit” mechanism for the formation of the final enzyme–substrate complex. The role of water dynamics in dictating the mechanism of enzyme–substrate interaction becomes further manifest in the neutral reverse micelles of Brij-30 and Triton X-100. In the former, the faster water dynamics aid the “conformational selection” pathway, whereas the significantly slower dynamics of water molecules in the latter are conducive to the “induced fit” mechanism in the enzyme–substrate interaction. Thus, nanoscopic water dynamics act as a switch in modulating the pathway of recognition of an enzyme (CHT) by the substrate (AMC) in reverse micelles.  相似文献   

17.
Constraining a single motion between distal residues separated by approximately 28 A in hybrid quantum/classical molecular dynamics simulations is found to increase the free energy barrier for hydride transfer in dihydrofolate reductase by approximately 3 kcal/mol. Our analysis indicates that a single distal constraint alters equilibrium motions throughout the enzyme on a wide range of time scales. This alteration of the conformational sampling of the entire system is sufficient to significantly increase the free energy barrier and decrease the rate of hydride transfer. Despite the changes in conformational sampling introduced by the constraint, the system assumes a similar transition state conformation with a donor-acceptor distance of approximately 2.72 A to enable the hydride transfer reaction. The modified thermal sampling leads to a substantial increase in the average donor-acceptor distance for the reactant state, however, thereby decreasing the probability of sampling the transition state conformations with the shorter distances required for hydride transfer. These simulations indicate that fast thermal fluctuations of the enzyme, substrate, and cofactor lead to conformational sampling of configurations that facilitate hydride transfer. The fast thermal motions are in equilibrium as the reaction progresses along the collective reaction coordinate, and the overall average equilibrium conformational changes occur on the slower time scale measured experimentally. Recent single molecule experiments suggest that at least some of these thermally averaged equilibrium conformational changes occur on the millisecond time scale of the hydride transfer reaction. Thus, introducing a constraint that modifies the conformational sampling of an enzyme could significantly impact its catalytic activity.  相似文献   

18.
An approach is presented that allows a detailed, quantitative characterization of conformational exchange processes in proteins on the micros-ms time scale. The approach relies on a combined analysis of NMR relaxation rates and chemical shift changes and requires that the chemical shift of the exchanging species can be determined independently of the relaxation rates. The applicability of the approach is demonstrated by a detailed analysis of the conformational exchange processes previously observed in the reduced form of the blue copper protein, plastocyanin from the cyanobacteria Anabaena variabilis (A.v. PCu) (Ma, L.; Hass, M. A. S.; Vierick, N.; Kristensen, S. M.; Ulstrup, J.; Led, J. J. Biochemistry 2003, 42, 320-330). The R1 and R2 relaxation rates of the backbone 15N nuclei were measured at a series of pH and temperatures on an 15N labeled sample of A.v. PCu, and the 15N chemical shifts were obtained from a series of HSQC spectra recorded in the pH range from 4 to 8. From the R1 and R2 relaxation rates, the contribution, Rex, to the transverse relaxation caused by the exchanges between the different allo-states of the protein were determined. Specifically, it is demonstrated that accurate Rex terms can be obtained from the R1 and R2 rates alone in the case of relatively rigid proteins with a small rotational anisotropy. The Rex terms belonging to the same exchange process were identified on the basis of their pH dependences. Subsequently the identifications were confirmed quantitatively by the correlation between the Rex terms and the corresponding chemical shift differences of the exchanging species. By this approach, the Rex terms of 15N nuclei belonging to contiguous regions in the protein could be assigned to the same exchange process. Furthermore, the analysis of the exchange terms shows that the observed micros-ms dynamics in A.v. PCu are caused primarily by the protonation/deprotonation of two histidine residues, His92 and His61, His92 being ligated to the Cu(I) ion. Also the exchange rate of the protonation/deprotonation process of His92 and its pH and temperature dependences were determined, revealing a reaction pathway that is more complex than a simple specific-acid/base catalysis. Finally, the approach allows a differentiation between two-site and multiple-site exchange processes, thus revealing that the protonation/deprotonation of His61 is at least a three-site exchange process. Overall, the approach makes it feasible to obtain exchange rates that are sufficiently accurate and versatile for studies of the kinetics and the mechanisms of local protein dynamics on the sub-millisecond time scale.  相似文献   

19.
Cytochrome (cyt) P450s hydroxylate a variety of substrates that can differ widely in their chemical structure. The importance of these enzymes in drug metabolism and other biological processes has motivated the study of the factors that enable their activity on diverse classes of molecules. Protein dynamics have been implicated in cyt P450 substrate specificity. Here, 2D IR vibrational echo spectroscopy is employed to measure the dynamics of cyt P450(cam) from Pseudomonas putida on fast time scales using CO bound at the active site as a vibrational probe. The substrate-free enzyme and the enzyme bound to both its natural substrate, camphor, and a series of related substrates are investigated to explicate the role of dynamics in molecular recognition in cyt P450(cam) and to delineate how the motions may contribute to hydroxylation specificity. In substrate-free cyt P450(cam), three conformational states are populated, and the structural fluctuations within a conformational state are relatively slow. Substrate binding selectively stabilizes one conformational state, and the dynamics become faster. Correlations in the observed dynamics with the specificity of hydroxylation of the substrates, the binding affinity, and the substrates' molecular volume suggest that motions on the hundreds of picosecond time scale contribute to the variation in activity of cyt P450(cam) toward different substrates.  相似文献   

20.
The role of protein dynamics in the control of substrate recognition, catalysis, and protein–protein interactions is often underestimated. Recently, a number of studies have examined the contribution of protein dynamics to the thermodynamics of ligand binding in detail, mostly using NMR relaxation measurements and molecular dynamics (MD) simulations. The results unequivocally demonstrate that conformational dynamics play a pivotal role in the properties and functions of proteins, and ignoring this contribution is likely to lead to substantial errors when explaining the biological function of proteins and in predictions of the binding affinities of their cognate ligands. However, the details of the interplay between structure and dynamics and the way it affects the biological function of the target protein remain poorly understood. In this study, the changes in fast (picosecond-to-nanosecond time scale) dynamics of catalytic domains of four human cytosine DNA methyltransferases (DNMTs) were studied using molecular dynamics (MD) simulations. The results provide insight into the protein dynamics changes that occur upon binding of the cofactor, S-adenosylmethionine (SAM). Contrary to expectations, increased amplitude of motions of backbone amide (N–H) and terminal heavy atom (C–C) bond vectors was observed in all studied DNMTs upon binding of SAM. These results imply that the cofactor binding causes a global increase in the extent of protein dynamics in the short time scale. This global dynamic change constitutes a favourable entropic contribution to the free energy of SAM binding. These results suggest that cytosine DNA methyltransferases may exploit changes in their fast scale dynamics to reduce the entropic cost of the substrate binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号