首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We study nonstationary iterative methods for solving preconditioned systems arising from discretizations of the convection–diffusion equation. The preconditioners arise from Gauss–Seidel methods applied to the original system. It is shown that the performance of the iterative solvers is affected by the relationship of the ordering of the underlying grid and the direction of the fow associated with the differential operator. Specifically, only those orderings that follow the fow give fast iterative solvers. © 1997 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 13 :321–330  相似文献   

2.
An a posteriori upper bound is derived for the nonstationary convection–diffusion problem using the Crank–Nicolson scheme and continuous, piecewise linear stabilized finite elements with large aspect ratio. Following Lozinski et al. (2009) [13], a quadratic time reconstruction is used.A space and time adaptive algorithm is developed to ensure the control of the relative error in the L2(H1) norm. Numerical experiments illustrating the efficiency of this approach are reported; it is shown that the error indicator is of optimal order with respect to both the mesh size and the time step, even in the convection dominated regime and in the presence of boundary layers.  相似文献   

3.
In this article we consider a model linear convection–diffusion problem with a weak layer. We analyze the singular-perturbation nature of the problem and show that no special precautions are required to cope with the weak layer: a standard upwind scheme on a (quasi-)uniform mesh is sufficient. We give a simple analysis for the method. Thus highlighting that not all problems with a small parameter multiplying the highest-order derivative are suitable for studying boundary-layer phenomena.  相似文献   

4.
We consider the system of equations arising from finite difference discretization of a three-dimensional convection–diffusion model problem. This system is typically nonsymmetric. The GMRES method with the Strang block-circulant preconditioner is proposed for solving this linear system. We show that our preconditioners are invertible and study the spectra of the preconditioned matrices. Numerical results are reported to illustrate the effectiveness of our methods.  相似文献   

5.
We study a class of degenerate convection-diffusion equations with a fractional non-linear diffusion term. This class is a new, but natural, generalization of local degenerate convection-diffusion equations, and include anomalous diffusion equations, fractional conservation laws, fractional porous medium equations, and new fractional degenerate equations as special cases. We define weak entropy solutions and prove well-posedness under weak regularity assumptions on the solutions, e.g. uniqueness is obtained in the class of bounded integrable solutions. Then we introduce a new monotone conservative numerical scheme and prove convergence toward the entropy solution in the class of bounded integrable BV functions. The well-posedness results are then extended to non-local terms based on general Lévy operators, connections to some fully non-linear HJB equations are established, and finally, some numerical experiments are included to give the reader an idea about the qualitative behavior of solutions of these new equations.  相似文献   

6.
A numerical method is proposed for solving singularly perturbed one-dimensional parabolic convection–diffusion problems. The method comprises a standard implicit finite difference scheme to discretize in temporal direction on a uniform mesh by means of Rothe's method and B-spline collocation method in spatial direction on a piecewise uniform mesh of Shishkin type. The method is shown to be unconditionally stable and accurate of order O((Δx)2t). An extensive amount of analysis has been carried out to prove the uniform convergence with respect to the singular perturbation parameter. Several numerical experiments have been carried out in support of the theoretical results. Comparisons of the numerical solutions are performed with an upwind finite difference scheme on a piecewise uniform mesh and exponentially fitted method on a uniform mesh to demonstrate the efficiency of the method.  相似文献   

7.
This paper is concerned with a compact finite difference method for solving systems of two-dimensional reaction–diffusion equations. This method has the accuracy of fourth-order in both space and time. The existence and uniqueness of the finite difference solution are investigated by the method of upper and lower solutions, without any monotone requirement on the nonlinear term. Three monotone iterative algorithms are provided for solving the resulting discrete system efficiently, and the sequences of iterations converge monotonically to a unique solution of the system. A theoretical comparison result for the various monotone sequences is given. The convergence of the finite difference solution to the continuous solution is proved, and Richardson extrapolation is used to achieve fourth-order accuracy in time. An application is given to an enzyme–substrate reaction–diffusion problem, and some numerical results are presented to demonstrate the high efficiency and advantages of this new approach.  相似文献   

8.
In this paper, by using a new non-polynomial parameters cubic spline in space direction and compact finite difference in time direction, we get a class of new high accuracy scheme of O(τ4 + h2) and O(τ4 + h4) for solving telegraph equation if we suitably choose the cubic spline parameters. Meanwhile, stability condition of the difference scheme has been carried out. Finally, numerical examples are used to illustrate the efficiency of the new difference scheme.  相似文献   

9.
In this note we propose a nonstandard technique for constructing global a posteriori error estimates for the stationary convection–reaction–diffusion equation. In order to estimate the approximation error in appropriate weighted energy norms, which measures the overall quality of the approximations, the underlying bilinear form is decomposed into several terms which can be directly computed or easily estimated from above using elementary tools of functional analysis. Several auxiliary parameters are introduced to construct such a splitting and tune the resulting upper error bound. It is demonstrated how these parameters can be chosen in some natural and convenient way for computations so that the weighted energy norm of the error is almost recovered, which shows that the estimates proposed are, in fact, quasi-sharp. The presented methodology is completely independent of numerical techniques used to compute approximate solutions. In particular, it is applicable to approximations which fail to satisfy the Galerkin orthogonality, e.g., due to an inconsistent stabilization, flux limiting, low-order quadrature rules, round-off and iteration errors etc. Moreover, the only constant that appears in the proposed error estimates is of global nature and comes from the Friedrichs–Poincaré inequality.  相似文献   

10.
对四维抛物型方程构造了一个高精度显格式,格式的稳定性条件为r=Δt/Δx2=△t/Δy2=△t/△z2=Δt/Δw2<1/2,截断误差阶达到O(Δt2 Δx4),通过数值实验,表明本文理论分析的正确性和文中格式较同类格式的优越性.  相似文献   

11.
In this paper we analyze convergence of basic iterative Jacobi and Gauss–Seidel type methods for solving linear systems which result from finite element or finite volume discretization of convection–diffusion equations on unstructured meshes. In general the resulting stiffness matrices are neither M‐matrices nor satisfy a diagonal dominance criterion. We introduce two newmatrix classes and analyse the convergence of the Jacobi and Gauss–Seidel methods for matrices from these classes. A new convergence result for the Jacobi method is proved and negative results for the Gauss–Seidel method are obtained. For a few well‐known discretization methods it is shown that the resulting stiffness matrices fall into the new matrix classes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
GMRES(k) is widely used for solving non-symmetric linear systems. However, it is inadequate either when it converges only for k close to the problem size or when numerical error in the modified Gram–Schmidt process used in the GMRES orthogonalization phase dramatically affects the algorithm performance. An adaptive version of GMRES(k) which tunes the restart value k based on criteria estimating the GMRES convergence rate for the given problem is proposed here. This adaptive GMRES(k) procedure outperforms standard GMRES(k), several other GMRES-like methods, and QMR on actual large scale sparse structural mechanics postbuckling and analog circuit simulation problems. There are some applications, such as homotopy methods for high Reynolds number viscous flows, solid mechanics postbuckling analysis, and analog circuit simulation, where very high accuracy in the linear system solutions is essential. In this context, the modified Gram–Schmidt process in GMRES, can fail causing the entire GMRES iteration to fail. It is shown that the adaptive GMRES(k) with the orthogonalization performed by Householder transformations succeeds whenever GMRES(k) with the orthogonalization performed by the modified Gram–Schmidt process fails, and the extra cost of computing Householder transformations is justified for these applications. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we extend the Sun and Zhang’s [24] work on high order finite difference method, which is based on the Richardson extrapolation technique and an operator interpolation scheme for the one and two dimensional steady convection diffusion equations to the three dimensional case. Firstly, we employ a fourth order compact difference scheme to get the fourth order accurate solution on the fine and the coarse grids. Then, we use the Richardson extrapolation technique by combining the two approximate solutions to get a sixth order accurate solution on coarse grid. Finally, we apply an operator interpolation scheme to achieve the sixth order accurate solution on the fine grid. During this process, we use alternating direction implicit (ADI) method to solve the resulting linear systems. Numerical experiments are conducted to verify the accuracy and effectiveness of the present method.  相似文献   

14.
In this paper, we propose a robust semi-explicit difference scheme for solving the Kuramoto–Tsuzuki equation with homogeneous boundary conditions. Because the prior estimate in L-norm of the numerical solutions is very hard to obtain directly, the proofs of convergence and stability are difficult for the difference scheme. In this paper, we first prove the second-order convergence in L2-norm of the difference scheme by an induction argument, then obtain the estimate in L-norm of the numerical solutions. Furthermore, based on the estimate in L-norm, we prove that the scheme is also convergent with second order in L-norm. Numerical examples verify the correction of the theoretical analysis.  相似文献   

15.
16.
In this paper, for the structured quadrilateral mesh we derive a nine-point difference scheme which has five cell-centered unknowns and four vertex unknowns. The vertex unknowns are treated as intermediate ones and are expressed as a linear combination of the neighboring cell-centered unknowns, which reduces the scheme to a cell-centered one with a local stencil involving nine cell-centered unknowns. The coefficients in the linear combination are known as the weights and two types of new weights are proposed. These new weights are neither discontinuity dependent nor mesh topology dependent, have explicit expressions, can reduce to the one-dimensional harmonic-average weights on the nonuniform rectangular meshes, and moreover, are easily extended to the unstructured polygonal meshes and non-matching meshes. Both the derivation of the nine-point scheme and that of new weights satisfy the linearity preserving criterion. Numerical experiments show that, with these new weights, the nine-point difference scheme and its simple extension have a nearly second order accuracy on many highly distorted meshes, including structured quadrilateral meshes, unstructured polygonal meshes and non-matching meshes.  相似文献   

17.
In this article, an exponential high-order compact (EHOC) alternating direction implicit (ADI) method, in which the Crank–Nicolson scheme is used for the time discretization and an exponential fourth-order compact difference formula for the steady-state 1D convection–diffusion problem is used for the spatial discretization, is presented for the solution of the unsteady 2D convection–diffusion problems. The method is temporally second-order accurate and spatially fourth order accurate, which requires only a regular five-point 2D stencil similar to that in the standard second-order methods. The resulting EHOC ADI scheme in each ADI solution step corresponds to a strictly diagonally dominant tridiagonal matrix equation which can be inverted by simple tridiagonal Gaussian decomposition and may also be solved by application of the one-dimensional tridiagonal Thomas algorithm with a considerable saving in computing time. The unconditionally stable character of the method was verified by means of the discrete Fourier (or von Neumann) analysis. Numerical examples are given to demonstrate the performance of the method proposed and to compare mostly it with the high order ADI method of Karaa and Zhang and the spatial third-order compact scheme of Note and Tan.  相似文献   

18.
A numerical study is made for solving one dimensional time dependent Burgers’ equation with small coefficient of viscosity. Burgers’ equation is one of the fundamental model equations in the fluid dynamics to describe the shock waves and traffic flows. For high coefficient of viscosity a number of solution methodology exist in the literature [6], [7], [8] and [9] and [14] but for the sufficiently low coefficient of viscosity, the exist solution methodology fail and a discrepancy occurs in the literature. In this paper, we present a numerical method based on finite difference which works nicely for both the cases, i.e., low as well as high viscosity coefficient. The method comprises a standard implicit finite difference scheme to discretize in temporal direction on uniform mesh and a standard upwind finite difference scheme to discretize in spacial direction on piecewise uniform mesh. The quasilinearzation process is used to tackle the non-linearity. An extensive amount of analysis has been carried out to obtain the parameter uniform error estimates which show that the resulting method is uniformly convergent with respect to the parameter. To illustrate the method, numerical examples are solved using the presented method and compare with exact solution for high value of coefficient of viscosity.  相似文献   

19.
This paper is concerned with the asymptotic stability of traveling wave fronts of a class of nonlocal reaction–diffusion equations with delay. Under monostable assumption, we prove that the traveling wave front is exponentially stable by means of the (technical) weighted energy method, when the initial perturbation around the wave is suitable small in a weighted norm. The exponential convergent rate is also obtained. Finally, we apply our results to some population models and obtain some new results, which recover, complement and/or improve a number of existing ones.  相似文献   

20.
We study the large time asymptotic behavior, in Lp (1p∞), of higher derivatives Dγu(t) of solutions of the nonlinear equation
(1)
where the integers n and θ are bigger than or equal to 1, a is a constant vector in with . The function ψ is a nonlinearity such that and ψ(0)=0, and is a higher order elliptic operator with nonsmooth bounded measurable coefficients on . We also establish faster decay when .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号