首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chiral self-assembled structures formed from organic molecules adsorbed on surfaces have been the subject of intense investigation in the recent decade, owing both to relevance in applications such as enantiospecific heterogeneous catalysis or chiral separation as well as to fundamental interest, for example, in relation to the origin of biomolecular homochirality. A central target is rational design of molecular building blocks allowing transfer of chirality from the molecular to the supramolecular level. We previously studied the surface self-assembly of a class of linear compounds based on an oligo(phenylene ethynylene) backbone, which were shown to form a characteristic windmill adsorption pattern on the Au(111) surface. However, since these prochiral compounds were intrinsically achiral, domains with oppositely oriented windmill motifs and related conformational surface enantiomers were always realized in equal proportion. Here we report on the enantioselective, high yield chemical synthesis of a structurally related but intrinsically chiral compound in which two peripheral tert-butyl substituents are replaced by sec-butyl groups, each containing an (S) chiral center. Using scanning tunneling microscopy under ultrahigh vacuum conditions, we characterize the adsorption structures formed from this compound on the Au(111) surface. The perturbation introduced by the modified molecular design is found to be sufficiently small so structures form that are closely analogous to those observed for the original tert-butyl substituted compound. However, as demonstrated from careful statistical analysis of high-resolution STM images, the introduction of the two chiral (S)-sec-butyl substituents leads to a strong preference for windmill motifs with one orientation, demonstrating control of the chiral organization of the molecular backbones through rational molecular design.  相似文献   

2.
The formation of DNA nucleoside-assisted π-conjugated nanostructures was studied by means of scanning tunneling microscopy (STM) and force field simulations. Upon adsorption of the achiral oligo(p-phenylenevinylene) (OPV) derivative at the liquid/solid interface, racemic conglomerates with mirror related rosettes are formed. Addition of the DNA nucleosides D- and L-thymidine, which act as "chiral handles", has a major effect on the supramolecular structure and the expression of chirality of the achiral OPV molecules. The influence of these "chiral handles" on the expression of chirality is probed at two levels: monolayer symmetry and monolayer orientation with respect to the substrate. This was further explored by tuning the molar ratio of the building blocks. Molecular modeling simulations give an atomistic insight into the monolayer construction, as well as the energetics governing the assembly. Thymidine is able to direct the chirality and the pattern of OPV molecules on the surface, creating chiral lamellae of π-conjugated dimers.  相似文献   

3.
Currently, there are numerous papers that discuss local chiral domains in supramolecular structures of achiral molecules established using the STM method, and by using DFT calculations. However, there are no data regarding the obtainment of macroscopically chiral 2D-supramolecular structures from achiral molecules. In this study, melamine and cyanuric acid supramolecular structures were self-assembled on a graphitized carbon black surface, which had a surface structure that was identical to HOPG, and also on the surface of an inert solid support for chromatography. Chirality induction according to the Kondepudi effect was used. For the supramolecular structures, MD calculations showed the possibility of obtaining a chiral structure. To establish macroscopic chirality, we proposed the use of the difference in enantiomer adsorption on the modified adsorbents. For this, two indirect methods were used: static adsorption with a polarimetric control and gas chromatography. Both methods indicated the chiral recognition ability of the adsorbents used.  相似文献   

4.
陈婷  万立骏 《中国科学B辑》2009,39(10):1102-1114
表面手性现象是物理化学科学研究的重要内容之一,研究表面手性现象,将有助于对分子吸附,分子间相互作用,多相手性催化,手性分离与拆分等科学和实际应用问题的深入理解.在表面手性现象和手性结构的研究中,扫描隧道显微技术(STM)发挥着重要作用,成为研究表面手性现象的重要手段.该综述文章以本课题组近年已发表的研究工作为主,重点介绍利用STM研究固体表面分子吸附组装体系中关于手性问题的部分结果,包括固有手性分子在固体表面的吸附,非手性分子组装形成手性结构,以及表面手性结构的转化和调控.还结合实验结果分析探讨了表面手性的结构形成、放大和传递等,展望了该研究领域的发展趋势.  相似文献   

5.
The bonding and self-assembly of a chirally organized monolayer of alanine on the Cu(110) surface has been investigated using reflection-absorption infrared spectroscopy, low-energy electron diffraction (LEED), and scanning tunneling microscopy (STM). This multitechnique approach has enabled an in-depth understanding of the hierarchy of chirality transfer: from a single adsorbed molecule, to size-defined chiral clusters, and then to an overall chiral assembly. The data have indicated that the alanine is in its anionic form, bound to the copper surface through the oxygens of the ionized carboxylate group and the nitrogen of the neutral amino group. Importantly, the methyl group is held away from the surface, resulting in direct chirality transfer into the footprint of the adsorbed alanine molecules, with the local adsorption motif for S-alanine being the mirror image of that created for R-alanine. STM has shown that S-alanine molecules self-organize to form size-defined chiral clusters of six or eight molecules at the surface, interspersed with chiral channels of bare metal. Together, these clusters and channels further self-assemble into a chiral array with one unique chiral domain sustained across the entire surface. A similar chiral assembly, but with the mirror organization, has been observed for R-alanine. Structural models for the individual clusters are proposed, and in conjunction with LEED data, overall models for these chiral phases of both S- and R-alanine have been constructed. Overall, this adsorption system has been found to be both strongly chemisorbed and capable of extensive intermolecular H-bonding, causing stresses that lead not only to the chiral self-organization of molecules but also to a specific self-organization of the empty chiral channels and spaces that intersperse the structure which, in turn, chirally assemble across macroscopic length scales to give a surface with global organizational chirality.  相似文献   

6.
The imaging and manipulation capabilities of the scanning tunnelling microscope (STM) render possible a novel nanoscale chemistry based on experiments with single molecules. Herein, we address several aspects of a nanoscale stereochemistry using the STM. As an example, we investigate 1‐nitronaphthalene on Au(111). 1‐Nitronaphthalene becomes chiral upon planar adsorption on the metal surface. High‐resolution STM images reflect the asymmetric electronic structure of the molecules and allow for the determination of the absolute configuration of any individual molecule within complex molecular structures. At medium coverage, spontaneous breaking of the chiral symmetry results in the formation of homochiral conglomerates, while at high coverage racemic structures prevail. Finally, the tip of the STM is used to separate “supramolecule‐by‐supramolecule” a racemic mixture of chiral 1‐nitronaphthalene aggregates into the enantiopure compounds.  相似文献   

7.
The formation of 2D chiral monolayers obtained by self-assembly of chiral molecules on surfaces has been widely reported in the literature. Control of chirality transfer from a single molecule to surface superstructures is a challenging and important aspect for tailoring the properties of 2D nanostructures. However, despite the wealth of investigations performed in recent years, how chiral transfer takes place on a large scale still remains an open question. In this paper we report a coupling of scanning tunneling microscopy and low energy electron diffraction measurements with an original theoretical approach, combining molecular dynamics and essential dynamics with density functional theory, to investigate self-assembled chiral structures formed when alaninol adsorbs on Cu(100). The peculiarity of this system is related to the formation of tetrameric molecular structures which constitute the building blocks of the self-assembled chiral monolayer. Such characteristics make alaninol/Cu(100) a good candidate to reveal chiral expression changes. We find that the deposition of alaninol enantiomers results in the formation of isolated tetramers that are aligned along the directions of the substrate at low coverage or when geometrical confinement prevents long-range order. Conversely, a rotation of 14° with respect to the Cu(100) unit vectors is observed when small clusters of tetramers are formed. An insight to the process leading to a 2D globally chiral surface has been obtained by monitoring molecular assemblies as they grow from the early stages of adsorption, suggesting that the distinctive orientation of the self-assembled monolayer originates from a balance of cooperating forces which start acting only when tetramers pack together to form small clusters.  相似文献   

8.
The adsorption and chiral expression of 6-nitrospiropyran (SP6) molecules on a Au(111) surface are studied by scanning tunneling microscopy (STM) in combination with density functional theory (DFT) calculations. Both the chirality and the adsorption orientation of each adsorbed SP6 molecule are determined. The racemic mixture of SP6 enantiomers forms two-dimensional (2D) domains with same close packed positional orders but different internal orientational structures due to the random distribution of two adsorption orientations in each domain. However, all these orientationally disordered 2D domains undergo spontaneous quasi chiral phase separation; the 2D SP6 domains separate into 1D homochiral chains in which the SP6 molecules adopt two orientations randomly. This novel phenomenon is attributed to the preferential formation of the energetic favorable configurations with both the C-H...O weak hydrogen bonds and the pi-stacking of the two moieties of each SP6 molecule.  相似文献   

9.
The bottom-up fabrication of surface hierarchical nanostructures is of great importance for the development of molecular nanostructures for chiral molecular recognition and enantioselective catalysis. Herein, we report the construction of a series of 2D chiral hierarchical structures by trinary molecular self-assembly with copper phthalocyanine (CuPc), 2,3,7,8,12,13-hexahexyloxy-truxenone (TrO23), and 1,3,5-tris(10-carboxydecyloxy) benzene (TCDB). A series of flower-like chiral hierarchical molecular architectures with increased generations are formed, and the details of these structures are investigated by high resolution scanning tunneling microscopy (STM). The flower-like hierarchical molecular architectures could be described by a unified configuration in which the lobe of each architecture is composed of a different number of triangular shape building units (TBUs). The off-axis edge-to-edge packing of TBUs confers the organizational chirality of the hierarchical assemblies. On the other hand, the TBUs can tile the surface in a vertex-sharing configuration, resulting in the expansion of chiral unit cells, which thereby further modulate the periodicity of chiral voids in the multilevel hierarchical assemblies. The formation of desired hierarchical structures could be controlled through tuning the molar ratio of each component in liquid phase. The results are significant for the design and fabrication of multicomponent chiral hierarchical molecular nanostructures.  相似文献   

10.
The mesoscale induction of two-dimensional supramolecular chirality (formation of 2D organic domains with a single handedness) was achieved by self-assembly of 1,2,4-benzenetricarboxylic (trimellitic) acid on a Cu(100) surface at elevated temperatures. The combination of spectroscopic [X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS)], real-space-probe [scanning tunneling microscopy (STM)], and computational [density functional theory (DFT)] methods allows a comprehensive characterization of the obtained organic adlayers, where details of molecular adsorption geometry, intermolecular coupling, and surface chemical bonding are elucidated. The trimellitic acid species, comprising three functional carboxylic groups, form distinct stable mirror-symmetric hydrogen-bonded domains. The chiral ordering is associated with conformational restriction in the domains: molecules anchor to the substrate with an ortho carboxylate group, providing two para carboxylic acid moieties for collective lateral interweaving through H bonding, which induces a specific tilt of the molecular plane. The ease of molecular symmetry switching in domain formation makes homochiral-signature propagation solely limited by the terrace width. The molecular layer modifies the morphology of the underlying copper substrate and induces mum-sized strictly homochiral terraces.  相似文献   

11.
A rapid development of nanotechnology opens up a way for the fabrication of solid surfaces containing unique adsorption properties. In this article, we present the concept of a chiral nanostructured surface as a potential environment for the separation of chiral molecules. In particular, we focus on the effect of size and shape of the adsorbing molecules on the effectiveness of their separation on a surface with a special distribution of active sites. The Monte Carlo simulation method was used to study enantiospecific adsorption of model chiral molecules that differ in molecular footprint and adsorption energy. It was demonstrated that manipulating the footprint offers many possibilities for tuning the preference of the surface for adsorption of a selected enantiomer. One interesting finding was that subtle differences in the interaction pattern of the molecule with the chiral surface can lead to a reversal of enantioselectivity. The results of this work highlight the role of extended surface chirality in enantiospecific adsorption of enantiomers. They also suggest that the proposed mechanism of chiral selection can be a realistic alternative to those inherent in conventional enantioselective adsorbents.  相似文献   

12.
Self-organized systems have attracted much at-tention due to their potential applications in nano- technology as a bottom-up?approach for the con-struction of molecule-scale devices and nanostruc-tures[1—4]. Beyond the self-assembly of small molecu-lar building blocks, Schnherr et al. recently suc-ceeded in arranging the rosette supramolecular nanos-tructures in two dimensions on HOPG[5,6]. Moreover, interest has tremendously increased in the su-pramolecular structures via coordination-dr…  相似文献   

13.
Photosensitive cinnamic acid conjugated glutamides were designed to demonstrate photocontrolled hierarchical chirality transfer and switching in self‐assembled systems. In methanol, the cinnamic acid derivatives self‐assembled into superhelices, which could be switched into nanokebabs upon UV irradiation. These two nanostructures showed opposite helicity. The chiral nanostructures could further convey their chirality to achiral fluorescent molecules and result in the emission of circularly polarized luminescence (CPL). Remarkably, the CPL followed the helicity of the chiral nanostructure rather than the inherent molecular chirality. Photodriven dimerization of the cinnamic moiety lead to a significant change in molecular packing and subsequent switching of the helicity of the formed nanostructures.  相似文献   

14.
利用低温STM研究了非手性的棒状并五苯分子在Bi(111)表面形成的手性风车团簇.在团簇内部,并五苯分子分别沿Bi(111)的3个对称轴方向平行排列,形成6个不同的分子带.在每个分子带中,相邻分子之间有一个滑移错位.当平行排列的分子数多于4时,滑移错位发生反向,形成弯曲的风车扇叶.我们认为,分子的滑移错位来自于分子之间的π-π相互作用;而滑移错位的反向是团簇内部的吸引力导致的密堆积的结果.这两种作用的竞争是形成手性风车团簇的微观机制.  相似文献   

15.
The self-assembly of L-tryptophan on Cu(111) is investigated by an ultrahigh vacuum scanning tunneling microscope (STM) at 4.4 K. A series of novel supramolecular structures have been prepared with different annealing temperatures.  相似文献   

16.
In situ scanning tunneling microscopy (STM) and cyclic voltammetry were employed to investigate the adsorption structures of three semi-crown ligands on an Au(111) surface under the potential control. It is found that all the molecules formed ordered arrays in 0.1 mol/L HClO4 solution, although their geometric structures are complex and asymmetric. The driving force was supposed to come from the balance between intermolecular and molecule-substrate interactions. High resolution STM images revealed internal molecular structures, orientations and packing arrangements in the ordered adlayers. The results are useful for preparing ordered arrays of transition metal-mediated nanostructures.  相似文献   

17.
The self-assembly of l-tryptophan on Cu(111) is investigated by an ultrahigh vacuum scanning tunneling microscope (STM) at 4.4 K. When deposited onto the substrate at around 120 K with a coverage of 0.1 monolayer, molecular trimers, tetramers, hexamers, and chains coexist on Cu(111). Then almost all molecules self-assemble into chiral hexamers after being annealed at room temperature. When increasing molecular coverage to the full layer, a new type of chain is observed on the surface. Based on the high-resolution STM images at sub-molecular level, we suggest that the l-tryptophan molecules are present in neutral, zwitterionic or anionic states in these structures.  相似文献   

18.
The supramolecular packing mode of physisorbed monolayers built up by chiral isophthalic acid derivatives and coadsorbed achiral solvent molecules was imaged at the liquid/graphite interface with scanning tunneling microscopy (STM). The picture on the right shows the submolecularly resolved STM image of an enantiomorphous domain composed of the R enantiomer of the isophthalic acid derivative studied and 1-heptanol molecules; the latter express the chirality of the monolayer. Upon adsorption a racemic mixture is separated into enantiomorphous domains.  相似文献   

19.
A detailed STM study of monolayers of 3,5-bis[(3,5-bisoctyloxyphenyl)methyloxy]benzaldehyde and 3,5-bis[(3,5-bisoctyloxyphenyl)methyloxy]benzyl alcohol adsorbed on graphite is presented. Very highly resolved scanning tunnelling microscopy images are observed at room temperature in air allowing the analysis of the conformation of the adsorbed molecules. These long-chain alkyl-decorated Fréchet-type dendrons are a powerful assembly motif and initially form a pattern based on trimeric units, assembled into hexagonal host structures with a pseudo-unit cell of seven molecules, one of which remains highly mobile. Over time, the supramolecular ordering changes from a trimeric into a dimeric pattern. The chirality arising from the adsorption onto a surface of the dendrons is discussed.  相似文献   

20.
A novel class of bent-core molecules with oligo(siloxane) or carbosilane units at both ends was synthesized and the self-organization of these molecules was investigated by polarizing microscopy, DSC, X-ray scattering, dielectric and electrooptical methods. Depending on the size of the silicon-containing segments, smectic and columnar liquid crystalline phases are formed. Most smectic phases are low birefringent and composed of macroscopic domains of opposite handedness (dark conglomerate phases). The switching process in these smectic phases is surface stabilized ferroelectric and, depending on the conditions, two distinct slow relaxation processes to nonpolar structures were observed. It is proposed that the smectic phases are built up by chiral and polar SmCsPF layer stacks which are separated by anticlinic interfaces. If the size of these layer stacks is sufficiently large a coupling to the substrate surfaces takes place and ferroelectric switching is observed. It is also suggested that the sponge-like layer distortion, occurring in the low birefringent mesophases, is due to an escape from the local polar order within these SmCsPF layer stacks. For compounds with larger silylated units a steric frustration arises, which leads to layer modulation (columnar ribbon phases) and this is associated with a transition from ferroelectric to antiferroelectric switching. All compounds show a switching of the molecules around the long axis which reverses the layer chirality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号