首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The results of Soudan-2 and MACRO experiments are summarized. Both experiments observe atmospheric neutrino anomalies in agreement with νμ → ντ oscillations with maximum mixing. The νμ → νs oscillations are disfavoured by the MACRO experiment at 98% C.L.  相似文献   

2.
We studied random walks on two-dimensional patterns formed by the sequence of configurations of complex elementary cellular automata (CA) with random initial configurations. The walkers are allowed to jump between nearest neighbours or next nearest neighbours 1 sites. On patterns of rules 22, 54, 90, 122, 126, 150 and 182, the diffusion is normal (ν=1/2). On patterns 18 and 146 the diffusion is anomalous, with ν=0.415±0.005, and the spectral dimension is Ds=1.25±0.1. From the analysis of the diffusion in the horizontal and vertical directions (space and time directions of the CA problem, respectively) of patterns 18 and 146, we obtained νx≈0.22 and νy≈0.42, because they have branches of 1 sites which are long in the vertical direction but narrow in the horizontal direction. Due to the anisotropic diffusion, the results do not satisfy the relation Ds=2DF/Dw, with Dw=1/ν and fractal dimension DF=2. Considering that the fractal dimension of the region visited by the walker is equal to the dimension of the substrate (DF), we suggest the new scaling relation Ds=2(νxy). This relation is supported by our numerical results and may be generalized to other structures with anisotropic diffusion.  相似文献   

3.
Oxalyl chloridefluoride (COCl)(COF) exhibits moderately strong discrete absorption in the 3050–3540Å region. The band spectrum has been analyzed as an allowed electronic transition of the planar trans molecule. The most active vibrations are the carbonyl stretching modes ν1′ and ν2′ and the in-plane bending mode ν9. Various other fundamental frequencies in the combining electronic states have been identified. The 000 band is at 28 724.5 cm−1; partial rotational analysis confirms that this band is type C. The appearance of “line” structure in the wings of the band is discussed and an explanation offered. The vibrational and rotational analyses confirm that the transition is under the Cs point group, as expected for a singlet-singlet n → π* type of excitation.  相似文献   

4.
Formic acid is a Cs asymmetric top molecule exhibiting an exceptionally strong Coriolis resonance between its ν7 and ν9 vibrational states. The usual molecular model composed of two Watson Hamiltonians coupled by linear and quadratic vibration-rotation coupling terms does not allow satisfactory interpretations of such rotational spectra by microwave spectroscopy. In this case, it is necessary to perform a more complete development of the vibration-rotation coupling part of the standard Hamiltonian operator. The first part of this paper gives details of these developments, yielding a new molecular model adapted to very strong Coriolis resonance for Cs asymmetric top molecules. This new model consists of two Watson Hamiltonians developed up to the sextic centrifugal distortion coefficients and linked by 10 coupling constants. In the second part of this paper, this model has been successfully tested on H12COOH and D12COOH. From careful microwave reinvestigations of the ν7 and ν9 states of these two molecules, numerous new important rotational lines of various μb type and intervibrational transitions of μc type have been assigned. Various tests are performed to estimate the quality of the results. A critical discussion of the numerical investigation revealed the limits of the new molecular model proposed for strong Coriolis resonance.  相似文献   

5.
The vibration-rotation spectrum of methyl isocyanide (CH3NC) has been recorded with the aid of a high-resolution Fourier transform spectrometer in the region 1370 to 1560 cm−1 containing the perpendicular band of the fundamental vibration ν6 (species E), the weaker parallel band of the ν3 (A1) fundamental, and the perpendicular combination band ν7 + ν8 (E) enhanced by Fermi resonance with ν6. Sixteen hundred seventy well-resolved lines were assigned to 15 subbands of ν6, 6 subbands of ν3, and 3 subbands of ν7 + ν8. A strong x, y-Coriolis resonance between ν3 and ν6 and Fermi resonance between ν±6 and the E component ν7 + ν8, as well as between ν3 and the A1,2 components ν±7 + ν8, greatly affects the spectrum. Additional weaker anharmonic interaction of ν6 with the ν4 + 2ν28 combination and higher-order rotational interactions connecting the various states were also detected in the spectrum. All of these interactions have been incorporated into a 9 × 9 Hamiltonian matrix used for modeling the upper states of the observed transitions. A set of spectroscopic constants is reported for the upper states of the bands ν3, ν6, and ν7 + ν8 and for ν4 + 2ν28 which reproduces the observed lines with an overall standard deviation of 0.0012 cm−1.  相似文献   

6.
Using a Fourier transform spectrometer, we have recorded the spectra of ozone in the region of 4600 cm−1, with a resolution of 0.008 cm−1. The strongest absorption in this region is due to the ν1+ ν2+ 3ν3band which is in Coriolis interaction with the ν2+ 4ν3band. We have been able to assign more than 1700 transitions for these two bands. To correctly reproduce the calculation of energy levels, it has been necessary to introduce the (320) state which strongly perturbs the (113) and (014) states through Coriolis- and Fermi-type resonances. Seventy transitions of the 3ν1+ 2ν2band have also been observed. The final fit on 926 energy levels withJmax= 50 andKmax= 16 gives RMS = 3.1 × 10−3cm−1and provides a satisfactory agreement of calculated and observed upper levels for most of the transitions. The following values for band centers are derived: ν01+ ν2+ 3ν3) = 4658.950 cm−1, ν0(3ν1+ 2ν2) = 4643.821 cm−1, and ν02+ 4ν3) = 4632.888 cm−1. Line intensities have been measured and fitted, leading to the determination of transition moment parameters for the two bands ν1+ ν2+ 3ν3and ν2+ 4ν3. Using these parameters we have obtained the following estimations for the integrated band intensities,SV1+ ν2+ 3ν3) = 8.84 × 10−22,SV2+ 4ν3) = 1.70 × 10−22, andSV(3ν1+ 2ν2) = 0.49 × 10−22cm−1/molecule cm−2at 296 K, which correspond to a cutoff of 10−26cm−1/molecule cm−2.  相似文献   

7.
Rabi oscillations were observed in the ASR(110), ΔM = 0 and ASQ(222), ΔM = 0 transitions of the ν2 band of 14NH3 in a molecular beam crossed by a CO2 laser beam. The frequency (in terms of the laser field amplitude) of the oscillations was used to determine the transition dipole moment of the ν2 band, yielding μsa = 0.261 ± 0.006 D. The hyperfine structure due to the electric quadrupole interaction of the nitrogen nucleus was clearly resolved.  相似文献   

8.
A pair of 1.5 μm semiconductor laser frequency standards have been developed for optical telecommunications use, stabilised to Doppler-free transitions of the ν1 + ν3 and ν1 + ν2 + ν4 + ν5 combination bands of 13C2H2. The Allan deviation σ/f for a laser locked to line P(10) of the former band follows a slope of 1.6 × 10−12τ−1/2, reaching a minimum of 5.7 × 10−14 at τ = 4000 s. The absolute frequencies of 61 lines of the ν1 + ν3 band and 43 lines of the ν1 + ν2 + ν4 + ν5 band, covering the spectral region 1520 nm to 1552 nm, have been measured by use of a combined frequency chain and femtosecond comb, together with a passive optical frequency comb generator. The mean uncertainties for the line frequencies within each band are 1.4 kHz for the ν1 + ν3 band and 1.9 kHz for the ν1 + ν2 + ν4 + ν5 band, representing improvements on the precision of previously published data by factors of 100 and 104, respectively. Improved values of the rotational constant B″ and centrifugal distortion coefficients D″, H″ and L″ of the vibrational ground state are presented.This article is published with the permission of the Controller of HMSO and the Queen’s Printer of Scotland  相似文献   

9.
The infrared spectrum of doubly deuterated methane CH2D2has been recorded in the region from 1900 to 2400 cm−1at almost Doppler-limited resolution by using two high-resolution Fourier transform spectrometers. The vibrational bands observed include 2ν4, ν4+ ν7, 2ν7, ν2, ν8, ν4+ ν9, and ν7+ ν9, which were analyzed by taking into account Coriolis and Fermi interactions among them and also those with ν4+ ν5, ν3+ ν7, and ν5+ ν7. Most of the centrifugal distortion constants were constrained to appropriate values, while the vibrational term value and three rotational constants in each of the seven excited states were adjusted along with Coriolis and Fermi interaction parameters by the least-squares analysis of the observed spectrum. The vibration–rotation interaction constants αsthus determined for the ν2and ν8states were combined with those of other fundamental states already published to calculate the equilibrium C–H distance.  相似文献   

10.
New measurements are reported for the infrared spectrum of sulfur trioxide, 32S16O3, with resolutions ranging from 0.0015 cm−1 to 0.0025 cm−1. Rovibrational constants have been measured for the fundamentals ν2, ν3, and ν4 and the overtone band 2ν3. Comparisons are made with the earlier high-resolution measurements on SO3, and the high correlation among some of the constants related to the Coriolis coupling of the ν2 and ν4 levels is discussed in order to understand the areas of disagreement with the earlier work. Splittings of some of the levels are observed and the splitting constant for K=3 of the ground state is determined for the first time. Other observed splittings include the K=1 levels of 2ν3 (l=2), the K=2 levels of ν3 and ν4, and the K=3 levels of ν2. The analysis shows that there are level crossings between the l=0 and l=2 states of 2ν3 that allow one to determine the separation of the subband centers for these two states even though access to the l=0 state from the ground state is electric-dipole forbidden. This is a generalized phenomenon that should be found for many other molecules with the same symmetry. The l-type resonance constant, q3, that causes the splitting of the l3=±1, k=±1 levels of ν3 also couples the l3=0 and 2 states of 2ν3.  相似文献   

11.
The infrared spectrum of allene has been recorded with high resolution (0.002-0.004 cm−1) on a Fourier transform instrument in the region 730 to 1170 cm−1 containing the perpendicular bands, ν9 and ν10. A total of 21 subbands with KΔK ranging from −6 to +14 have been assigned in the ν9 band, and 26 subbands with KΔK = −10 to +15 have been assigned in the ν10 band. The bands are affected by a combination of a Jz-Coriolis and a quartic anharmonic interaction between their upper states ν9 and ν10. In addition, several other more localized perturbations are found in the spectrum. The nature of the interactions responsible for these perturbations is discussed, and five of the strongest perturbations are quantitatively accounted for by constructing a Hamiltonian matrix which includes five different perturbing states and their Coriolis and anharmonic resonances with the ν9 and ν10 upper states. A set of spectroscopic constants for the ν9 and ν10 states and for some of the perturbing states is reported.  相似文献   

12.
The infrared spectrum of the SiH4 molecule has been recorded between 2040 and 2320 cm−1 using the high-resolution Fourier interferometer of the Laboratoire de Photophysique Moléculaire (Orsay, France). The resolution was 5.4 × 10−3 cm−1. In this region, many lines were previously analyzed and assigned to the ν1/ν3 stretching dyad of 28SiH4, 29SiH4, and 30SiH4 molecules [J. Mol. Spectrosc. 143 (1990) 35]. However, several lines in the spectrum were not assigned. The results obtained in our previous study [J. Mol. Spectrosc. 197 (1999) 307] of the infrared spectrum of 28SiH4, in the bending-stretching tetrad region at 3100 cm−1, enabled us to assign 204 of the observed transitions to hot bands (the ν1 + ν2/ν1 + ν4/ν2 + ν3/ν3 + ν4 bending-stretching tetrad minus the ν2/ν4 bending dyad). These transitions were used to refine the set of the Hamiltonian parameters of the bending-stretching tetrad. The analysis is performed using the tensorial formalism developed in Dijon for tetrahedral molecules and implemented in the STDS software (http://www.u-bourgogne.fr/LPUB/shTDS.html).  相似文献   

13.
The semirigid bender Hamiltonian [Bunker and Landsberg, J. Mol. Spectrosc. 67, 374–385 (1977)] is used to fit the rotation-vibration energy level separations in the carbon suboxide molecule C3O2. We allow the CC bond lengths and CCO bond angles to change with the CCC bending angle ρ. A very good fit to the energy levels is obtained and, in particular, the B values are systematically fitted better than when the rigid bender is used. The dependence of the effective CCC bending potential function on the vibrations ν2, ν3, and ν4 is determined, and we find that excitation of ν3 or ν4 raises the barrier to linearity whereas excitation of ν2 lowers it. These results can be understood by considering the ρ dependence of the G-matrix elements. We determine that the barrier to CCC linearity in the zero-point vibrational state is 28 cm−1 but until more data are available for the ν1, ν5, and ν6 vibrations we cannot precisely determine the true barrier. However, it has been previously shown that the barrier is little affected by excitation of ν1 or ν5, and that it is reduced by 10–15 cm−1 by excitation of ν6. From these results we deduce that the barrier to CCC linearity in the true bending potential function is 33 cm−1 with an uncertainty of about 5 cm−1. Thus the equilibrium structure is bent at the central carbon atom; the equilibrium CCC angle is 157°.  相似文献   

14.
A search for νμ → νe oscillations has been conducted at the Los Alamos Meson Physics Facility (LAMPF) using νμ from π+ decay in flight. An excess in the number of beam-related events from the νe Ce X inclusive reaction is observed. The excess is too large to be explained by normal νe contamination in the beam at a confidence level greater than 99%. If interpreted as an oscillation signal, the observed oscillation probability of (2.6 ± 1.3 ± 0.5) × 10−3 is consistent with the previously reported oscillation evidence from LSND.  相似文献   

15.
The Fourier transform infrared spectrum of gaseous 1,3,4-oxadiazole, C2H2N2O, has been recorded in the 800–1600 cm−1 wavenumber region with a resolution around 0.0030 cm−1. The four fundamental bands ν9(B1; 852.5 cm−1), ν14(B2; 1078.5 cm−1), ν4(A1; 1092.6 cm−1), and ν2(A1; 1534.9 cm−1) are analyzed by the standard Watson model. Ground state rotational and quartic centrifugal distortion constants are obtained from a simultaneous fit of ground state combination differences from three of these bands and previous microwave transitions. Upper state spectroscopic constants are obtained for all four bands from single band fits using the Watson model. The ν4 and ν14 bands form a c-Coriolis interacting dyad, and the two bands are analyzed simultaneously by a model including first and second order Coriolis resonance using the ab initio predicted Coriolis coupling constant . An extended local resonance in ν2 is explained as higher order b-Coriolis type resonance with ν6 + ν10, which is further perturbed globally by the ν15 + ν10 level. A fit of selected low-J transitions to a triad model including ν2(A1), ν6 + ν10(B1), and ν15 + ν10(A2) using an ab initio calculated Coriolis coupling constant is performed.The rotational constants, ground state quartic centrifugal distortion constants, anharmonic frequencies, and vibration–rotational constants (α-constants) predicted by quantum chemical calculations using a cc-pVTZ and TZ2P basis with B3LYP methodology, are compared with the present experimental data, where there is generally good agreement. A complete set of anharmonic frequencies and α-constants for all fundamental levels of the molecule is given.  相似文献   

16.
The Coriolis-coupled band system of ν5, ν2, and 2ν3 of CD3I was analyzed by making use of all of the experimental data now available. These data included the high-resolution infrared spectra, microwave spectra, and laser Stark spectra. The analysis gave values, more precise than before, of the spectroscopic constants for ν5, ν2, and 2ν3 and the interaction constants. The determination of the rotational constant A for 2ν3 gave a value for , with which all of the αA constants for CD3I have been completed. These αA values were incorporated with the known value of A6 to give a value for A0.  相似文献   

17.
The vibration-rotation bands of all the fundamentals and several overtone and combination vibrations of F12CP have been recorded. The C-F stretching fundamental ν3 was observed in strong Fermi resonance with the overtone 2ν20; a similar resonance was also observed between ν1 + ν3 and ν1 + 2ν10. The spectral analysis gave fundamental wavenumbers: ν1 = 1670.842 (9), ν2 = 375.428 (6), and ν3 = 780.10 (22) cm−1. The value of the equilibrium rotational constant Be was found to be 0.1758943 (81) cm−1. The harmonic force field for this molecule was derived from the wavenumbers of the three fundamentals and the l-doubling constant.  相似文献   

18.
The two mid-infrared bands of the CF2=CHF molecule, ν5centered at 1172.673 cm−1and ν6+ ν9at 1155.105 cm−1, were measured on a tunable diode laser spectrometer with a resolution near the Doppler limit. These vibrations ofA′ species give rise toa/bhybrid bands, even though our analysis has pointed out that the intensity of thea-type component is predominant. Most of theJandKstructure has been resolved in different subbranches, and the rovibrational analysis led to the assignment of about 1400 (J≤ 60,Ka≤ 22,Kc≤ 60) and 90 (J≤ 56,Ka≤ 5,Kc≤ 56) lines of the ν5and ν6+ ν9bands, respectively. Using Watson'sA-reduction Hamiltonian in theIrrepresentation, a set of accurate spectroscopic constants for the upper states has been derived from transitions free of major resonance effects. The rotational structure of the ν5vibration also exhibits effects of Coriolis perturbation by a state identified as ν7+ ν11. Parameters for the perturber were determined from the interaction effects near the observed crossings, using a dyad model including first-orderb-Coriolis interaction.  相似文献   

19.
Two weak stretching bands, ν1 + 3ν3 and 3ν1 + ν3, of the sulfur dioxide molecule have been recorded at high resolution and analyzed for the first time with using a Fourier transform Bruker IFS-120 HR interferometer. About 1000 transitions with Jmax. = 51, , and 900 transitions with Jmax. = 53, have been assigned to the bands ν1 + 3ν3 and 3ν1 + ν3, respectively. Analysis of the recorded spectra was made using the model of isolated vibrational states. Parameters obtained from the fit reproduce the initial experimental ro-vibrational energies with the rms deviation of 0.0006 and 0.0012 cm−1 for the bands, 3ν1 + ν3 and ν1 + 3ν3, respectively. The problem of determination of the intramolecular potential function of SO2 is discussed.  相似文献   

20.
This paper is devoted to the third part of the analysis of the very weak absorption spectrum of the 18O3 isotopologue of ozone recorded by CW-Cavity Ring Down Spectroscopy between 5930 and 6900 cm−1. In the two first parts [A. Campargue, A. Liu, S. Kassi, D. Romanini, M.-R. De Backer-Barilly, A. Barbe, E. Starikova, S.A. Tashkun, Vl.G. Tyuterev, J. Mol. Spectrosc. (2009), doi: 10.1016/j.jms.2009.02.012 and E. Starikova, M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, A. Campargue, A.W.Liu, S. Kassi, J. Mol. Spectrosc. (2009) doi: 10.1016/j.jms.2009.03.013], the effective operators approach was used to model the spectrum in the 6200–6400 and 5930–6080 cm−1 regions, respectively. The analysis of the whole investigated region is completed by the present investigation of the 6490–6900 cm−1 upper range. Three sets of interacting states have been treated separately. The first one falls in the 6490–6700 cm−1 region, where 1555 rovibrational transitions were assigned to three A-type bands: 3ν2 + 5ν3, 5ν1 + ν2 + ν3 and 2ν1 + 3ν2 + 3ν3 and one B-type band: ν1 + 3ν2 + 4ν3. The corresponding line positions were reproduced with an rms deviation of 18.4 × 10−3 cm−1 by using an effective Hamiltonian (EH) model involving eight vibrational states coupled by resonance interactions. In the highest spectral region – 6700–6900 cm−1 – 389 and 183 transitions have been assigned to the ν1 + 2ν2 + 5ν3 and 4ν1 + 3ν2 + ν3 A-type bands, respectively. These very weak bands correspond to the most excited upper vibrational states observed so far in ozone. The line positions of the ν1 + 2ν2 + 5ν3 band were reproduced with an rms deviation of 7.3 × 10−3 cm−1 by using an EH involving the {(054), (026), (125)} interacting states. The coupling of the (431) upper state with the (502) dark state was needed to account for the observed line positions of the 4ν1 + 3ν2 + ν3 band (rms = 5.7 × 10−3 cm−1).The dipole transition moment parameters were determined for the different observed bands. The obtained set of parameters and the experimentally determined energy levels were used to generate a complete line list provided as Supplementary Materials.The results of the analyses of the whole 5930–6900 cm−1 spectral region were gathered and used for a comparison of the band centres to their calculated values. The agreement achieved for both 18O3 and 16O3 (average difference on the order of 1 cm−1) indicates that the used potential energy surface provides accurate predictions up to a vibrational excitation approaching 80% of the dissociation energy. The comparison of the 18O3 and 16O3 band intensities is also discussed, opening a field of questions concerning the variation of the dipole moments and resonance intensity borrowing by isotopic substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号