首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
AFM imaging of the adsorption of self-assembled octadecylsiloxane (ODS) monolayers has been utilized for probing surface properties of silicon wafers. It has been found that both growth rate of the organic films and island size of sub-monolayer films are influenced by the doping level of the wafers as well as by the surface finishing step during wafer production. Generally, higher doping levels led to lower adsorption rates and smaller islands. Variation of the sample pretreatment used for surface finishing of similarly doped wafers led only to significant changes of the island size, but not of the surface coverage. The results presented open up a valuable perspective for characterizing the surface homogeneity of silicon wafers which is an important parameter for monitoring-wafers in semiconductor industry. Received: 26 June 2000 / Revised: 26 July 2000 / Accepted: 1 August 2000  相似文献   

2.
AFM imaging of the adsorption of self-assembled octadecylsiloxane (ODS) monolayers has been utilized for probing surface properties of silicon wafers. It has been found that both growth rate of the organic films and island size of sub-monolayer films are influenced by the doping level of the wafers as well as by the surface finishing step during wafer production. Generally, higher doping levels led to lower adsorption rates and smaller islands. Variation of the sample pretreatment used for surface finishing of similarly doped wafers led only to significant changes of the island size, but not of the surface coverage. The results presented open up a valuable perspective for characterizing the surface homogeneity of silicon wafers which is an important parameter for monitoring-wafers in semiconductor industry. Received: 26 June 2000 / Revised: 26 July 2000 / Accepted: 1 August 2000  相似文献   

3.
The ambition of this study is to analyze the role of interfacial interactions in friction and nanowear of polystyrene, by comparing friction against hydrophobic wafers (methyl‐terminated) and hydrophilic wafers (hydroxyl‐terminated) as a function of sliding velocity and normal force. Friction experiments are performed with a translation tribometer and nanowear investigation is achieved by using atomic force microscopy (AFM) analysis of the wafer surfaces after friction. Experimental results show that the friction coefficients measured on hydrophilic surfaces are always larger than those obtained with hydrophobic surfaces, indicating a relationship between friction and interfacial interactions. Elsewhere, AFM analysis shows that polystyrene transfer appears for a higher normal force in the case of hydrophobic substrates compared to hydrophilic one. However, the corresponding tangential (or friction) force necessary to detect transfer is quite similar for both types of substrates, indicating that the initial wear of polystyrene occurs for a similar threshold interfacial shear. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2449–2454, 2006  相似文献   

4.
The chemical attachment of enantiomerically pure trianglamines to silicon wafers through isocyanate functions was performed. The self-assembled monolayer was analyzed by ATR-FTIR, ellipsometry, AFM, contact angle measurements. An AFM tip was functionalized by enantiomerically pure trianglamine using the same pathway. Chemical force microscopy showed chiral recognition between the functionalized tip and the functionalized wafer.  相似文献   

5.
We have monitored deflection-distance curves with an atomic force microscope (AFM) in contact mode, with a silicon nitride tip, on chemically modified silicon wafers, in the air. The wafers were modified on their surface by grafting self-assembled monolayers (SAMs) of different functional groups such as methyl, ester, amine, or methyl fluoride. A chemically modified surface with a functionalized hydroxyl group was also considered. Qualitative analysis allowed us to compare adhesive forces versus chemical features and surface energy. The systematic calibration procedure of the AFM measurements was performed to produce quantitative data. Our results show that the experimentally determined adhesive force or thermodynamic work of adhesion increases linearly with the total surface energy determined with contact angles measured with different liquids. The influence of capillary condensation of atmospheric water vapor at the tip-sample interface on the measured forces is discussed. Quantitative assessment values were used to determine in situ the SAM-tip thermodynamic work of adhesion on a local scale, which have been found to be in good agreement with quoted values. Finally, the determination of the surface energy of the silicon wafer deduced from the thermodynamic work of adhesion is also proposed and compared with the theoretical value.  相似文献   

6.
Silicon wafers with thermal silicon oxide layers were cleaned and hydrophilized by three different methods: (1) the remote chemical analysis (RCA) wet cleaning by use of ammonia and hydrogen peroxide mixture solutions, (2) water-vapor plasma cleaning, and (3) UV/ozone combined cleaning. All procedures were found to remove effectively organic contaminations on wafers and gave identical characteristics of the contact angle, the surface roughness and the normal force interactions, measured by atomic force microscopy (AFM). However, it is found that wafers cleaned by the RCA method have several times larger friction coefficients than those cleaned by the plasma and UV/ozone methods. The difference was explained by the atomic-scale topological difference induced during the RCA cleaning. This study reveals the lateral force microscopy as a very sensitive method to detect the microstructure of surfaces.  相似文献   

7.
Polystyrene (PS) brushes were prepared on oxide passivated silicon by the surface initiated polymerization (SIP) technique. From an AIBN-type free radical initiator, which was silanized and immobilized on silicon wafers, styrene brushes were directly polymerized and grafted from the surface. The formation of the initiator monolayer and, subsequently, the polymer brush on the surface were monitored by X-ray photoelectron spectroscopy (XPS) and ellipsometry. Friction force measurements were performed by atomic force microscopy (AFM), using a 5 microm SiO2 colloidal sphere tip and under systematically varied solvent environments (nonpolar to polar), to demonstrate the dependence of brush lubricity on solvation. The relative uptake of solvents in the PS brush was determined by quartz crystal microbalance (QCM), and it correlates well with friction data. It is surmised that, in poor solvent environments, the polymer brush exists in a collapsed conformation, giving rise to the higher observed friction response.  相似文献   

8.
Semiconducting molecular-material thin-films of tetrabenzo (b,f,j,n) {1,5,9,13} tetraazacyclohexadecine copper(II) and nickel(II) bisanthraflavates have been prepared by using vacuum thermal evaporation on Corning glass substrates and crystalline silicon wafers. The films thus obtained were characterized by infrared spectroscopy (FTIR), atomic force microscopy (AFM), ultraviolet–visible (UV–vis) spectroscopy and ellipsometry. IR spectroscopy showed that the molecular-material thin-films exhibit the same intra-molecular bonds as the original compounds, which suggests that the thermal evaporation process does not significantly alter their bonds. The optical band-gap values calculated from the absorption coefficient may be related to non-direct electronic interband transitions. The effect of temperature on conductivity was also measured in these samples. It was found that the temperature-dependent electric current is always higher for the nickel-based material and suggests a semiconductor-like behavior with conductivities in the order of 10?8 Ω?1 cm?1.  相似文献   

9.
The stability of thin water films on silicon substrates coated with cationic and anionic polyelectrolytes was investigated by the thin film pressure balance technique. Depending on the surface charge of the substrate, the water films are either stable (on negatively charged wafers) or rupture rapidly (on positively charged wafers). It is supposed that this behavior is due to a negative surface charge of the free water surface. The underlying assumption that the films' stability is due to electrostatic interactions is supported by measurements of the disjoining pressure on silicon wafers with a native oxide layer, which indicates a decrease of the film thickness, and thus decreasing repulsive interaction between the two film interfaces, with increasing ionic strength.  相似文献   

10.
Covalently linked DNA/protein multilayered film for controlled DNA release   总被引:1,自引:0,他引:1  
A stable, biocompatible single strand DNA (ssDNA)/bovine serum albumin (BSA) multilayered film for control release of DNA was fabricated on PEI-coated quartz slides, gold-evaporated plates and silicon wafers, respectively through a formaldehyde-induced, covalently linked layer-by-layer (LBL) assembly technique. The constructed film structure was well characterized by using UV-vis spectrometry, surface plasmon resonance (SPR) and atomic force microscopy (AFM). The results showed that the DNA incorporated LBL film was fabricated successfully and the amount of ssDNA and BSA in the film could be tailored simply by controlling the number of the bilayers. The control release of DNA from the film was also monitored in this study. UV-vis spectrometry, SPR and AFM measurements indicated that the release of ssDNA and amino acid was adjustable by changing the proteinase K incubation time. This biocompatible covalently assembled film demonstrates an innovative approach to engineer a DNA/protein based nanostructure for controlled DNA release, which could provide stability, controllability and flexibility superior to that of LBL film assembled by electrostatic attraction. Since the film in this work can be assembled on different substrates, it is very feasible to fabricate nanoparticle-based gene therapy systems with this new approach and to have great potential in biomedical applications.  相似文献   

11.
We demonstrate a guided self-assembly approach to the fabrication of DNA nanostructures on silicon substrates. DNA oligonucleotides self-assemble into "rafts" 8 x 37 x 2 nm in size. The rafts bind to cationic SAMs on silicon wafers. Electron-beam lithography of a thin poly(methyl methacrylate) (PMMA) resist layer was used to define trenches, and (3-aminopropyl)triethoxysilane (APTES), a cationic SAM precursor, was deposited from aqueous solution onto the exposed silicon dioxide at the trench bottoms. The remaining PMMA can be cleanly stripped off with dichloromethane, leaving APTES layers 0.7-1.2 nm in thickness and 110 nm in width. DNA rafts bind selectively to the resulting APTES stripes. The coverage of DNA rafts on adjacent areas of silicon dioxide is 20 times lower than on the APTES stripes. The topographic features of the rafts, measured by AFM, are identical to those of rafts deposited on wide-area SAMs. Binding to the APTES stripes appears to be very strong as indicated by "jamming" of the rafts at a saturation coverage of 42% and the stability to repeated AFM scanning in air.  相似文献   

12.
The study on the adsorption of horseradish peroxidase (HRP) onto silicon wafers was carried out by means of in situ ellipsometry, atomic force microscopy (AFM) and contact angle measurements. A smooth HRP layer adsorbed onto Si wafers. The enzymatic activity of free or adsorbed HRP was determined by the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and by the emulsion polymerization of ethylene glycol dimethacrylate (EGDMA). Upon adsorbing, HRP molecules might have undergone some conformational changes, which caused a small reduction of enzymatic activity in comparison to that observed for HRP solution. However, it was possible to reuse the same HRP-covered Si wafer as catalyst in the polymerization of EGDMA three times.  相似文献   

13.
活性端基聚苯乙烯表面修饰膜的制备与摩擦学性能   总被引:2,自引:0,他引:2  
以巯丙基三甲氧基硅烷为链转移剂 ,利用自由基聚合反应合成了三甲氧基硅烷封端的聚苯乙烯 ,研究了其在单晶硅基底上的自组装行为 ,并用红外、X射线光电子能谱、原子力显微等对膜进行了表征 .研究发现 ,聚合物的浓度大于 1mg mL时才能形成较完整的聚合物膜 ,均方根粗糙度低于 1nm ,自组装过程在 90℃时 1h内即可完成 .与空白基底相比 ,自组装聚苯乙烯膜具有良好的减摩抗磨性能 ,稳定摩擦系数为 0 12 .  相似文献   

14.
Semiconducting thin films were grown on quartz substrates and crystalline silicon wafers, using dilithium phthalocyanine and the organic ligands 2,6-dihydroxyanthraquinone and 2,6-diaminoanthraquinone as the starting compounds. The films, thus obtained, were characterized by Fourier Transform infrared (FTIR), fast atomic bombardment (FAB+) mass and ultraviolet-visible (UV-Vis) spectroscopies. The surface morphology of these films was analyzed by means of atomic force microscopy (AFM) and scanning electron microscopy (SEM). It was found that the temperature-dependent electric current in all cases showed a semiconductor behavior with conductivities on the order of 10-6·S cm-1, whereas the highest value corresponded to the thin film based upon the bidentate amine. The Tauc and Cody optical band gap values of thin films were calculated from the absorption coefficients and were found to be around 1.5 eV, with another strong band between 2.3 and 2.43 eV, arising from non-direct transitions. The curvature in the Tauc plot influencing the determination of the optical gap, the Tauc optical gap corresponding to the thicker film is smaller. The dependence of the Cody optical gap on the film thickness was negligible.  相似文献   

15.
The complexity of the cellular response, induced even by the simplest experimental stimulus, requires an increased number of cellular parameters to be simultaneously monitored. An all electrochemical system allowing the simultaneous and real-time monitoring of both cell adherence and superoxide release into the extracellular space was developed to address this challenge. Cell adherence (to neighboring cells and to substrate) was monitored using non-faradaic impedance spectroscopy while the superoxide release was monitored using a cytochrome c-based amperometric biosensor. The system was used to observe for the first time how these two cellular parameters are changing in real-time for renal cells exposed to calcium oxalate, a calculus-forming salt. It was discovered that calcium oxalate crystals decrease cell adherence and in the same time induce oxidative stress by an overproduction of superoxide. Subconfluent cells, without fully developed tight junctions, appear to be more vulnerable than confluent cells with tight junctions indicating the important protective role of these junctions.  相似文献   

16.
Thin cellulose films on silicon substrates are used as a model system for paper fiber bonds. The films are formed by spincoating trimethylsilylcellulose on the substrates. The films are regenerated using HCl gas. After swelling in water, two samples can be bonded like a sandwich. It is shown that this model system can be used to measure the bond strength between the two films under controlled conditions. For a detailed characterization the films are studied in terms of roughness with atomic force microscopy (AFM). The hardness of the films is investigated by AFM-based nanoindentation. The chemistry and the thickness of the films is studied by infrared spectroscopy. It is shown that this model system enables the evaluation of different bonding mechanisms discussed in pulp and paper research. Our results clearly indicate that Coulomb interaction is an important bonding mechanism.  相似文献   

17.
研究了Pd在氢终止的p型单晶硅(100)表面的自催化化学沉积(AED). 在室温下将刻蚀过的硅片浸入常规的HF-PdCl2-HCl溶液制备了Pd膜. 将沉积了Pd的基底作为工作电极, 用循环伏安法(CV)、原子力显微镜(AFM)和X射线光电子能谱(XPS)研究了Pd膜的阳极溶出行为和形貌. 结果表明, Pd的生长遵循Volmer-Weber (VW)生长模式, Pd膜给出了很好的支持.  相似文献   

18.
The influence of Ge deposition prior to carbon interaction with 3° off‐axis Si(111) substrates on the structural and morphological properties of the formed silicon carbide (SiC) layer is studied. In situ reflection high‐energy electron diffraction (RHEED) and X‐ray diffraction (XRD) revealed the formation of the cubic silicon carbide (3C‐SiC) modification. In situ spectroscopic ellipsometry measurements revealed a decreasing 3C‐SiC thickness with increasing Ge predeposition. Atomic force microscopy (AFM) studies revealed that the surface overlayer morphology is mainly formed by periodic step arrangements whose relevant geometric parameters, i.e. lateral separation, height and terrace width, depend on the Ge content. Besides the changes of the step morphology, the surface roughness and the grain size and the strain of the formed 3C‐SiC decreases with increasing germanium precoverage. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
A cyanurate prepolymer has been applied to smooth silicon wafers or to distinctly structured aluminium coatings. The surface composition of the substrates has been investigated by X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES) and ellipsometry. The application methods, spin coating and dip coating represent adsorption by a technical process exerting significant shear stresses or nearly equilibrated conditions, respectively. The mean tickness of the prepolymer film has been adjusted by variation of the concentration of the solution and checked by ellipsometry. Atomic Force Microscopy (AFM) monitored the development of the respective film morphologies of all 4 systems (silicon/aluminium, spin/dip coating) in the mean film thickness range from 1 to 50 nm.  相似文献   

20.
A cyanurate prepolymer has been applied to smooth silicon wafers or to distinctly structured aluminium coatings. The surface composition of the substrates has been investigated by X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES) and ellipsometry. The application methods, spin coating and dip coating represent adsorption by a technical process exerting significant shear stresses or nearly equilibrated conditions, respectively. The mean tickness of the prepolymer film has been adjusted by variation of the concentration of the solution and checked by ellipsometry. Atomic Force Microscopy (AFM) monitored the development of the respective film morphologies of all 4 systems (silicon/aluminium, spin/dip coating) in the mean film thickness range from 1 to 50 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号