首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin layers of cellulose I nanocrystals were spin-coated onto silicon wafers to give a flat model cellulose surface. A mild heat treatment was required to stabilize the cellulose layer. Interactions of this surface with polyelectrolyte layers and multilayers were probed by atomic force microscopy in water and dilute salt solutions. Deflection–distance curves for standard silicon nitride tips were measured for silicon, cellulose-coated silicon, and for polyelectrolytes adsorbed on the cellulose surface. Transfer of polymer to the tip was checked by running deflection–distance curves against clean silicon. Deflection–distance curves were relatively insensitive to adsorbed polyelectrolyte, but salt addition caused transfer of cationic polyelectrolyte to the tip, and swelling of the polyelectrolyte multilayers.  相似文献   

2.
Surface modification of silicon wafers by anodic etching in hydrofluoric acid results in the formation of porous silicon layers consisting of nanocrystallites covered with SiH bonds. A combination of high resolution Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and Fourier Transform Infrared Spectroscopy (FT-IR) was used to study the surface chemistry of this new material.  相似文献   

3.
The effect of radiofrequency glow-discharge sputtering on the sample surface in terms of modifications in the surface morphology were investigated in this work by using atomic force microscopy (AFM) and rugosimetry measurements. The influence of GD operating parameters (e.g. rf power, discharge pressure and sputtering time) on surface roughening was investigated using two different types of samples: mirror-polished and homogeneous silicon wafers and chromate conversion coatings (CCCs). Surface morphology changes produced by GD sputtering into the sample surface were carefully investigated by AFM and rugosimetry, both at the original sample surface and at the bottom of GD craters using different GD experimental conditions, such as the sputtering time (from 1 s to 20 min), rf forward power (20–60 W for the Si wafer and 10–60 W for the CCC), and discharge pressure (400–1,000 Pa for the Si wafer and 500–1000 Pa for the CCC). In the present study, GD-induced morphology modifications were observed after rf-GD-OES analysis, both for the silicon wafers and the CCC. Additionally, the changes observed in surface roughness after GD sputtering were found to be sample-dependent, changing the proportion, shape and roughness of the micro-sized patterns and holes with the sample matrix and the GD conditions.  相似文献   

4.
Silver nanocraters and monodisperse nanoparticles were formed on silicon wafers by spin-coating of an aqueous AgNO3/PVA solution and calcination of the resulting Ag+/PVA composite film. The monodisperse Ag nanoparicles were formed from small Ag+/PVA aggregates and were uniformly and stably distributed on the substrate surface. They were located as close as 2.8 nm apart (edge to edge) without coalescence. This nanoparticle stability was apparently derived from their interaction with the oxidized wafer surface. On the other hand, Ag metallic nanocraters with and without nanodots at their centers were produced from large Ag+/PVA aggregates. The explosive decomposition of AgNO3 and PVA by calcination could explain their formation. When Ag+ ions were reduced to Ag nanoparticles prior to calcination, larger Ag nanoparticles were produced probably due to aggregation of closely situated nanoparticles. Those nanoparticles that were located far enough stayed intact. Perspectives are discussed in terms of potential applications.  相似文献   

5.
Thin films of a diandicyanato bisphenol A (DCBA) prepolymer on silicon substrates have been investigated. Angle dependent X-ray photoelectron spectroscopy reveals some thickness-dependent features, which lead to an adsorption model for the DCBA prepolymer molecules. The adsorption of the first layer is governed by the interaction of the triazine rings with the substrate surface.  相似文献   

6.
Thin films of a diandicyanato bisphenol A (DCBA) prepolymer on silicon substrates have been investigated. Angle dependent X-ray photoelectron spectroscopy reveals some thickness-dependent features, which lead to an adsorption model for the DCBA prepolymer molecules. The adsorption of the first layer is governed by the interaction of the triazine rings with the substrate surface.  相似文献   

7.
8.
Oxygen in silicon nitride films on silicon wafers was analyzed by activation with the16O(3He, p)18F reaction. By3He bombardment of samples propertly arranged under consideration of the18F recoil effect, total oxygen was reliably determined and its predominant part was estimated to be located whether on film surface, in film interior, or on film-substrate interface. Sample films with 0.1 to 2 μm thicknesses were found to contain 0.2 to 2 μg/cm2 of oxygen in locations varying with preparation conditions. This method has been compared with ESCA and other methods for surface analysis.  相似文献   

9.
Silicon wafers have been silylated with VTMS (vinyltrimethoxysilane) and hydrolyzed. Subsequently, PVP (polyvinyl pyrrolidone) was grafted onto the silylated surface by two different techniques: the grafting-through (GT) and the grafting-onto techniques (GO). The measurement of contact angles along with the topography analysis by atomic force microscopy (AFM) has allowed monitoring the different stages of the process and the temporal evolution of polymer grafting. The results have demonstrated the feasibility of both methods of grafting but have shown that the GT method gives a higher density of polymer-grafted chains. The AFM technique in adequate liquid environments has been proven to permit the surface density of chains to be distinguished by both methods and to estimate the length of the resulting PVP chains.  相似文献   

10.
Summary The dose of nickel ions implanted with an energy of 300 keV or 6 MeV, respectively, into silicon wafers was measured by X-ray fluorescence analysis (XRFA) after the implantation process. Dose values for Ni were determined within the range from 5×1015 to 1×1018 ions/cm2. The detection limit of this simple and non-destructive procedure amounts to about 1014 atoms/cm2. The accuracy was confirmed by flame atomic absorption spectrometry (FAAS), total-reflection X-ray fluorescence analysis (TXRFA), and by Rutherford-backscattering spectroscopy (RBS). The study confirms XRFA to be a suitable method for dose determinations after the implantation process.  相似文献   

11.
Procedure and results of instrumental neutron activation analysis of very pure silicon wafers of 12.5 and 15 cm diameter are described. It is shown that the determined contaminations are mainly present on the surface or in a surface layer of the wafers. With the method outlined here very low limits of detection for a large number of elements are obtained. The analyses also confirmed that two routine process cleaning procedures do not contaminate the surface of the waters.  相似文献   

12.
AFM study of forces between silica, silicon nitride and polyurethane pads   总被引:1,自引:0,他引:1  
Interaction of silica and silicon nitride with polyurethane surfaces is rather poorly studied despite being of great interest for modern semiconductor industry, e.g., for chemical-mechanical planarization (CMP) processes. Here we show the results from the application of the atomic force microscopy (AFM) technique to study the forces between silica or silicon nitride (AFM tips) and polyurethane surfaces in aqueous solutions of different acidity. The polyurethane surface potentials are derived from the measured AFM data. The obtained potentials are in rather good agreement with measurements of zeta-potentials using the streaming-potentials method. Another important parameter, adhesion, is also measured. While the surface potentials of silica are well known, there are ambiguous results on the potentials of silicon nitride that is naturally oxidized. Deriving the surface potential of the naturally oxidized silicon nitride from our measurements, we show that it is not oxidized to silica despite some earlier published expectations.  相似文献   

13.
The mechanism of the recrystallization of nano-scale bacterial surface protein layers (S-layers) on solid substrates is of fundamental interest in the understanding and engineering of biomembranes and e.g. biosensors. In this context, the influence of the charging state of the substrate had to be clarified. Therefore, the electrochemical behaviour of the S-layers on gold electrodes has been investigated by in-situ electrochemical quartz microbalance (EQMB) measurements, scanning force microscopy (SFM) and small-spot X-ray photoelectron spectroscopy (SS-XPS) of potentiostatically emersed substrates. It was shown that the negatively charged bonding sites of the S-layer units (e.g. carboxylates) can bond with positively charged Au surface atoms in the positively charged electrochemical double layer region positive of the point of zero charge ( approximately -0.8 V vs. saturated mercury-mercurous sulphate electrode). Surface conditions in other potential regions decelerated the recrystallization and fixation of S-layers. Time-resolved in-situ and ex-situ measurements demonstrated that two-dimensional S-layer crystal formation on gold electrodes can occur within few minutes in contrast to hours common in self-assembled monolayer (SAM) generation. These results proved that the recrystallization and fixation of 2D-crystalline S-layers on an electronic conductor can be influenced and controlled by direct electrochemical manipulation.  相似文献   

14.
AFM imaging of the adsorption of self-assembled octadecylsiloxane (ODS) monolayers has been utilized for probing surface properties of silicon wafers. It has been found that both growth rate of the organic films and island size of sub-monolayer films are influenced by the doping level of the wafers as well as by the surface finishing step during wafer production. Generally, higher doping levels led to lower adsorption rates and smaller islands. Variation of the sample pretreatment used for surface finishing of similarly doped wafers led only to significant changes of the island size, but not of the surface coverage. The results presented open up a valuable perspective for characterizing the surface homogeneity of silicon wafers which is an important parameter for monitoring-wafers in semiconductor industry. Received: 26 June 2000 / Revised: 26 July 2000 / Accepted: 1 August 2000  相似文献   

15.
AFM imaging of the adsorption of self-assembled octadecylsiloxane (ODS) monolayers has been utilized for probing surface properties of silicon wafers. It has been found that both growth rate of the organic films and island size of sub-monolayer films are influenced by the doping level of the wafers as well as by the surface finishing step during wafer production. Generally, higher doping levels led to lower adsorption rates and smaller islands. Variation of the sample pretreatment used for surface finishing of similarly doped wafers led only to significant changes of the island size, but not of the surface coverage. The results presented open up a valuable perspective for characterizing the surface homogeneity of silicon wafers which is an important parameter for monitoring-wafers in semiconductor industry. Received: 26 June 2000 / Revised: 26 July 2000 / Accepted: 1 August 2000  相似文献   

16.
Packaging technologies are a great issue in MEMS/NEMS fabrication. Moreover, silicon to glass anodic bonding is a common boding technique for MEMS/NEMS packaging. Hence, dicing the wafer into individual devices is a real challenge for fragile structures. This investigation shows an extension of the manual cleaving dicing for bonded silicon/glass wafers. The designed structure with no coincident anchors between silicon and glass avoids that the fracture expands toward the interior of the device during manual cleaving. Highest stresses are localized on the anchors, causing the fracture in those points. This method was experimentally tested to dice anodically bonded silicon-glass wafers.  相似文献   

17.
Hydrophilic silicon wafers are studied against aqueous solutions of hexadecyl trimethyl ammonium bromide (CTAB) at concentrations between 0.05 mM up to 1 mM (CMC). AFM studies show that nanobubbles are formed at concentrations up to 0.4 mM. From 0.5 mM upward, no bubbles could be detected. This is interpreted as the formation of hydrophobic domains of surfactant aggregates, becoming hydrophilic at about 0.5 mM. The high contact angle of the nanobubbles (140-150° through water) indicates that the nanobubbles are located on the surfactant domains. A combined imaging and colloidal probe AFM study serves to highlight the surfactant patches adsorbed at the surface via nanobubbles. The nanobubbles have a diameter between 30 and 60 nm (after tip deconvolution), depending on the surfactant concentration. This corresponds to a Laplace pressure of about 30 atm. The presence of the nanobubbles is correlated with force measurements between a silica probe and a silicon wafer surface. The study is a contribution to the better understanding of the short-range attraction between hydrophilic surfaces exposed to a surfactant solution.  相似文献   

18.
利用原子力显微镜(Atomic Force Microscopy,AFM)对淋巴细胞表面形貌进行了形态学的初步研究,观察到了其膜表面其他显微技术所不能发现的超微结构.同时也运用扫描近场光学显微镜(Scanning Near field Optical Microscopy,SNOM)对淋巴细胞进行成像,观察了其对光的透射、吸收等光学性质,并对两种成像方法进行了比较.研究发现:淋巴细胞膜表面凹凸不平,分布着大量直径几十到几百纳米不等的小颗粒;淋巴细胞中央部位有自发荧光现象.结果表明,AFM和SNOM可作为进一步探讨淋巴细胞的结构与功能关系的有力工具.  相似文献   

19.
For the instrumental neutron activation analysis of trace impurities in high purity silicon wafer, a modified single comparator method has been applied. The energy distribution of the neutrons at the irradiation position was measured using the two flux monitors, Au and Co, and elemental contents were calculated using the silicon matrix in the wafer as a comparator. This has advantage of reducing the cross contamination from an external monitor during sample preparation and irradiation, the uncertainties from the non-homogeneity of the neutron flux and the error on the weight of comparators. Determination limits for 49 elements were presented under the condition of 72 hours irradiation at a neutron flux of 3.7·1013 n·cm-2·s-1 and 4000 s measurement. The analytical results obtained by this method and the conventional single comparator method were compared and were found to agree well within 5%.  相似文献   

20.
With the aim of extending the usefulness of an existing biomimetic catalytic system, cobalt porphyrin catalytic units with thiol linkers were heterogenized via chemical grafting to silicon wafers and utilized for the catalytic oxidation of hydroquinone to p-benzoquinone. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to analyze the morphology and composition of the heterogeneous catalyst. The results of the catalytic oxidation of hydroquinone obtained with porphyrins grafted on silicon were compared with those obtained earlier with the same catalyst in homogeneous phase and immobilized on gold. It was found that the catalysis could run over 400 h, without showing any sign of deactivation. The measured catalytic activity is at least 10 times higher than that measured under homogeneous conditions, but also 10 times lower than that observed with the catalytic unit immobilized on gold. The reasons of this discrepancy are discussed in term of substrate influence and overlayer organization. The silicon-immobilized catalyst has potential as an advanced functional material with applications in oxidative heterogeneous catalysis of organic reactions, as it combines long-term relatively high activity with low cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号