首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A series of bidentate pyridine‐functionalized palladium N‐heterocyclic carbene (Pd NHC) complexes with various wingtip substituents (R = methyl, phenyl and tert‐butyl) have been synthesized and evaluated for their potential biomedical applications as antimicrobials and antiproliferative drug candidates. The obtained Pd NHC complexes were applied in a standard broth microdilution assay for determination of their antimicrobial activities against thirteen strains of pathogenic microorganisms. In addition to that, cytotoxic activities of the Pd NHC complexes were also evaluated against three human cancer cell lines, namely breast (MCF‐7), colon (HCT116) and oral (H103) cancer cells, using a standard MTT assay. Upon coordination to palladium, the Pd NHC complexes show significant antimicrobial activities with minimum inhibitory concentrations in the micromolar range, and they are cytotoxic to the tested carcinomas with IC50 ranging from 13 to 38 μM. Evidences for influence of both wingtip substituents and optical isomerism on the biological activities of the complexes have been found.  相似文献   

2.
We synthesized a series of new bidentate NHC (N-heterocyclic carbene) precursors with anthracene and xanthene skeletons. The corresponding NHC-Pd complexes were prepared from these precursors. The catalytic activity of these Pd complexes was examined.  相似文献   

3.
Efficient dual stereocontrol can be achieved by using axially chiral cyclometalated bidentate N-heterocyclic carbene palladium(II) complexes for the addition of indole to N-tosylarylimines simply by the adjustment of the R group on the benzene rings of the NHC–Pd(II) complexes.  相似文献   

4.
Pd K-edge X-ray absorption near-edge spectroscopy (XANES) is used to probe the unoccupied molecular orbitals in bidentate diphosphine Pd complexes. Complexes containing a series of bidentate diphosphine ligands (PP) are examined to study the effect of the ligand bite angle on the charge redistribution in these complexes. Different coordinating moieties (XX) have been used to induce a range of Pd oxidation states. A full interpretation of the Pd K-edge XANES data is presented. The negative second derivative of these XANES data provides direct information on the energy and electronic distribution of the different unoccupied molecular orbitals probed. The charge redistributions within the complexes, as reflected in the effective Pd oxidation state, are indicated by both the intensity of the first edge feature, the "Pd d peak", and the energy of the second edge feature, the "Pd p peak", which can be easily observed in the negative second derivative of the XANES data. Additionally, the changing covalent interaction between the Pd and coordinated moieties via the Pd p orbitals is reflected directly in the energy splitting of the "Pd p" peak. Thus, investigation of these (PP)Pd(XX) complexes, some used as catalysts in organic synthesis, with XANES spectroscopy provides new essential information on their electronic properties. Further, the XANES analysis techniques described in this paper can be applied to investigate the unoccupied molecular orbitals and charge redistributions within a wide range of samples.  相似文献   

5.
The Pd-PEPPSI complexes widely used to catalyze numerous reactions eliminate the pyridine ligand on treatment with protic acids to give binuclear complexes [Pd(NHC)X2]2 with the Pd–X–Pd (X = Cl, Br, I) bridging bonds. The reaction proceeds with high yields (78–98%) and can be regarded as a preparative approach to binuclear complexes. A prolonged heat treatment of either Pd-PEPPSI complexes or binuclear [Pd(NHC)X2]2 complexes in the presence of strong protic acids results in the Pd–NHC bond cleavage to give azolium salts (proligands) and palladium salts.  相似文献   

6.
《Journal of Coordination Chemistry》2012,65(16-18):2787-2799
Abstract

Mononuclear trans-Pd(II)–NHC complexes (where NHC?=?N-heterocyclic carbene) bearing asymmetrically substituted NHC-ligand have been synthesized via transmetalation reaction between Ag(I)–NHC complexes and [Pd(NCCH3)2Cl2]. The NHC precursors are accessible in two steps by N-n-alkyl reactions of benzimidazole. The resultant benzimidazolium salts were deprotonated with Ag2O by in situ deprotonation to facilitate the formation of mononuclear Ag(I)–NHC complexes. Single-crystal structural study for Pd(II)–NHC shows that the palladium(II) ion exhibits a square-planar geometry of two NHC ligands and two chloride ions. The cytotoxicity study was investigated against breast cancer cell line (MCF-7). The Ag(I)–NHC complexes exhibit better activities than their corresponding Pd(II)–NHC complexes, whereas all benzimidazolium salts are inactive toward MCF-7 cancer cell line.  相似文献   

7.
Peng HM  Song G  Li Y  Li X 《Inorganic chemistry》2008,47(18):8031-8043
A new type of quinoline-functionalized palladium N-heterocyclic carbene (NHC) complexes has been synthesized via silver transmetallation. The quinoline moiety was either directly attached to the imidazole ring or linked to it by a methylene group. NHCs with a methylene linker tend to form trans biscarbene complexes in the reaction of Pd(COD)Cl2, while NHCs without any linker form chelating NHC-quinoline (NHC-N) complexes. These two types of carbenes also react with [Pd(allyl)Cl]2 to give monodentate NHC palladium eta(3)-allyl chlorides [Pd(NHC)(allyl)Cl]. Fluxionality in the NMR time scale was observed for most complexes, and the origin of their dynamic behaviors was discussed for each type of structure. For [Pd(NHC)(allyl)Cl] with a relatively small wing tip group of the NHC, the fluxionality (selective line-broadening of (1)H NMR signals) is caused by selective eta(3)-eta(1)-eta(3) allyl isomerization. For NHC with a bulkier (t)Bu group, a different line-broadening pattern was observed and was ascribed to partially hindered Pd-C(carbene) bond rotation. For cationic chelating complexes [Pd(NHC-N)(allyl)]BF4, the dynamic exchange process likely originates from a dissociative boat-to-boat inversion of 7-membered palladacycles. Activation parameters were measured for this process. Crystal structures were reported for representative complexes in each category.  相似文献   

8.
Mixed NHC-phosphane palladium(0) complexes [(NHC)Pd(PR(3))] (NHC: N-heterocyclic carbene) are synthesized directly from commercially available reagents, with the possibility to tune the nature of both the NHC and the phosphane. Reaction of [(NHC)Pd(allyl)Cl] (palladium source) and PR(3), in the presence of a base afforded, in isopropanol, [(NHC)Pd(PR(3))] in good yields. We found that the nature of the solvent played a key role in the efficient reduction of the Pd(II) precursor to Pd(0). Supported by experimental evidence we propose that the reduction step is driven by the isopropoxide anion formed in situ from isopropanol and a base. Detection of acetone in the reaction mixture confirms that the isopropoxide anion acts as the reducing agent. Moreover, different bases proved efficient for the reaction. The structures of the complexes were unambiguously confirmed by X-ray analysis. Exposure of these complexes to air does not lead to decomposition, but to the oxo-complex [(NHC)Pd(PR(3))(O(2))], which is stable both in the solid state and in solution.  相似文献   

9.
A series of zinc complexes of monodentate N-heterocyclic carbenes (NHCs) and a new sterically bulky bidentate pyridyl-NHC ligand have been synthesized and characterized by spectroscopic and X-ray crystallographic methods. Dinuclear alkoxide complexes of monodentate NHC complexes with 2,4,6-trimethylphenyl substituents appear to form monomeric species in solution and show good control and activity for lactide polymerization, including mild stereoelectivity as indicated by formation of heterotactic-enriched polylactide in d,l-lactide polymerizations. Kinetics studies revealed an overall second order rate law, first order in [LA] and [catalyst]. Efforts to obtain Zn–alkoxide complexes of a more sterically hindered NHC with 2,6-diisopropylphenyl groups were unsuccessful due to Zn–NHC bond scission. Ligand dissociation was also observed in attempts to prepare Zn–alkoxide complexes of the bidentate pyridyl-NHC system, despite its chelating nature.  相似文献   

10.
A very straightforward one-pot method has been developed for preparation of air-stable CpPd(NHC)Cl complexes 1a-d. This new class of well-defined NHC-Pd complexes exhibits high catalytic activity in Kumada-Tamao-Corriu cross-coupling reaction involving various aryl and heteroaryl chlorides. Notably, the less sterically encumbered NHC ligand around Pd centre showed higher catalytic activity.  相似文献   

11.
N-Heterocyclic carbene (NHC) ligands are ubiquitously utilized in catalysis. A common catalyst design model assumes strong M–NHC binding in this metal–ligand framework. In contrast to this common assumption, we demonstrate here that lability and controlled cleavage of the M−NHC bond (rather than its stabilization) could be more important for high-performance catalysis at low catalyst concentrations. The present study reveals a dynamic stabilization mechanism with labile metal–NHC binding and [PdX3][NHC-R]+ ion pair formation. Access to reactive anionic palladium intermediates formed by dissociation of the NHC ligands and plausible stabilization of the molecular catalyst in solution by interaction with the [NHC-R]+ azolium ion is of particular importance for an efficient and recyclable catalyst. These ionic Pd/NHC complexes allowed for the first time the recycling of the complex in a well-defined form with isolation at each cycle. Computational investigation of the reaction mechanism confirms a facile formation of NHC-free anionic Pd in polar media through either Ph–NHC coupling or reversible H–NHC coupling. The present study formulates novel ideas for M/NHC catalyst design.  相似文献   

12.
Lee HM  Zeng JY  Hu CH  Lee MT 《Inorganic chemistry》2004,43(21):6822-6829
A new imidazolium salt, 1,3-bis(2-diphenylphosphanylethyl)-3H-imidazol-1-ium chloride (2), for the phosphine/N-heterocyclic carbene-based pincer ligand, PC(NHC)P, and its palladium complexes were reported. The complex, [Pd(PC(NHC)P)Cl]Cl (4), was prepared by the common route of silver carbene transfer reaction and a novel direct reaction between the ligand precursor, PC(NHC)P.HCl and PdCl(2) without the need of a base. Metathesis reactions of 4 with AgBF(4) in acetonitrile produced [Pd(PC(NHC)P)(CH(3)CN)](BF(4))(2) (5). The same reaction in the presence of excess pyridine gave [Pd(PC(NHC)P)(py)](BF(4))(2) (6). The X-ray structure determination on 4-6 revealed the chiral twisting of the central imidazole rings from the metal coordination plane. In solution, fast interconversion between left- and right-twisted forms occurs. The twisting reflects the weak pi-accepting property of the central NHC in PC(NHC)P. The uneven extent of twisting among the three complexes further implies the low rotational barrier about the Pd-NHC bond. Related theoretical computations confirm the small rotational energy barrier about the Pd-NHC bond (ca. 4 kcal/mol). Catalytic applications of 4 and 5 have shown that the complexes are modest catalysts in Suzuki coupling. The complexes were active catalysts in Heck coupling reactions with the dicationic complex 5 being more effective than the monocationic complex 4.  相似文献   

13.
Four mononuclear and dinuclear pyrazole-3-carboxylates assisted NHC–Pd complexes have been synthesized and characterized. Notably, the bridge-cleavage reactions of [Pd(μ-Cl)(Cl)(NHC)]2 with 1H-pyrazole-3-carboxylic acid afforded dinuclear complexes [(NHC)Pd(μ-1H-pyrazolato-3-carboxylate)]2, in which the 1H-pyrazolato-3-carboxylate was employed as a N^N^O dianionic chelating and bridging ligand. To further explore the structural features and catalytic properties of the complexes, 1-methyl-1H-pyrazole-3-carboxylic acid was introduced into the coordination with [Pd(μ-Cl)(Cl)(NHC)]2 and the corresponding mononuclear complexes (NHC)PdCl(1-methyl-1H-pyrazole-3-carboxylate) were obtained. The catalytic properties of the complexes in desulfitative arylation of azoles with arylsulfonyl hydrazides were initially investigated.  相似文献   

14.
A series of Ni and Pd complexes with three different N‐heterocyclic carbene (NHC)‐based ligands (imidazolylidene, benzimidazolylidene and pyrene–imidazolylidene) has been prepared and fully characterized. The influence of the addition of pyrene to solutions containing these complexes is studied by means of NMR and UV/Vis spectroscopies and by cyclic voltammetry. The addition of pyrene to the pyrene–NHC‐containing Pd and Ni complexes gives rise to the formation of adducts by π–π stacking interactions between pyrene and the pyrene group of the NHC ligand. This interaction causes a modification of the electronic properties of the metal, as demonstrated by cyclic voltammetric studies of the Ni–NHC complexes. Theoretical calculations support this type of π‐interactions, and justify the higher interactions observed with the pyrene–NHC containing complexes. The catalytic activities of the complexes were tested in the Suzuki–Miyaura C?C coupling and in the α‐arylation of ketones. The addition of pyrene as an external π‐stacking additive does not affect the activities of the complexes in the Suzuki–Miyaura coupling, but this observation may be justified due to the fact that the process is heterogeneously catalyzed, as indicated by the mercury‐drop test. The addition of pyrene to the catalytic α‐arylation of ketones results in a decrease in the activity of the reactions catalyzed by the pyrene–imidazolylidene palladium complex, whereas the other two catalysts do not modify their activity in the presence of this π‐stacking additive.  相似文献   

15.
The synthesis and characterization of a series of (N-heterocyclic carbene)PdCl3(NMe3H)+ ion-pair complexes are presented. Applying the quaternary ammonium salt as the function with NHC–Pd(II) complexes yields the new ion-pair complexes. The NHC–Pd(II) ion-pair complexes work well by undergoing the Suzuki–Miyaura reaction with aryl chloride substrates in water under mild conditions in air at room temperature. Twenty products resulting from Suzuki–Miyaura coupling reactions carried out in the presence of the new NHC–Pd(II) ion-pair complex under mild optimal conditions were examined to determine the optimum yields.  相似文献   

16.
Palladium(II) complexes are generally reactive toward substitution/reduction, and their biological applications are seldom explored. A new series of palladium(II) N‐heterocyclic carbene (NHC) complexes that are stable in the presence of biological thiols are reported. A representative complex, [Pd(C^N^N)(N,N′‐nBu2NHC)](CF3SO3) ( Pd1 d , HC^N^N=6‐phenyl‐2,2′‐bipyridine, N,N′‐nBu2NHC=N,N′‐di‐n‐butylimidazolylidene), displays potent killing activity toward cancer cell lines (IC50=0.09–0.5 μm ) but is less cytotoxic toward a normal human fibroblast cell line (CCD‐19Lu, IC50=11.8 μm ). In vivo anticancer studies revealed that Pd1 d significantly inhibited tumor growth in a nude mice model. Proteomics data and in vitro biochemical assays reveal that Pd1 d exerts anticancer effects, including inhibition of an epidermal growth factor receptor pathway, induction of mitochondrial dysfunction, and antiangiogenic activity to endothelial cells.  相似文献   

17.
The origin of hydroxyl group tolerance in neutral and especially cationic molybdenum imido alkylidene N-heterocyclic carbene (NHC) complexes has been investigated. A wide range of catalysts was prepared and tested. Most cationic complexes can be handled in air without difficulty and display an unprecedented stability towards water and alcohols. NHC complexes were successfully used with substrates containing the hydroxyl functionality in acyclic diene metathesis polymerization, homo-, cross and ring-opening cross metathesis reactions. The catalysts remain active even in 2-PrOH and are applicable in ring-opening metathesis polymerization and alkene homometathesis using alcohols as solvent. The use of weakly basic bidentate, hemilabile anionic ligands such as triflate or pentafluorobenzoate and weakly basic aromatic imido ligands in combination with a sterically demanding 1,3-dimesitylimidazol-2-ylidene NHC ligand was found essential for reactive and yet robust catalysts.  相似文献   

18.
The origin of hydroxyl group tolerance in neutral and especially cationic molybdenum imido alkylidene N‐heterocyclic carbene (NHC) complexes has been investigated. A wide range of catalysts was prepared and tested. Most cationic complexes can be handled in air without difficulty and display an unprecedented stability towards water and alcohols. NHC complexes were successfully used with substrates containing the hydroxyl functionality in acyclic diene metathesis polymerization, homo‐, cross and ring‐opening cross metathesis reactions. The catalysts remain active even in 2‐PrOH and are applicable in ring‐opening metathesis polymerization and alkene homometathesis using alcohols as solvent. The use of weakly basic bidentate, hemilabile anionic ligands such as triflate or pentafluorobenzoate and weakly basic aromatic imido ligands in combination with a sterically demanding 1,3‐dimesitylimidazol‐2‐ylidene NHC ligand was found essential for reactive and yet robust catalysts.  相似文献   

19.
A series of monomeric palladacycle complexes bearing n‐butyl‐substituted N‐heterocyclic carbenes, namely [Pd(NHC)X(dmba)] (dmba: dimethylbenzylamine and [Pd(NHC)X(ppy)]; NHC: 1‐n‐butyl‐3‐substituted benzylimidazol‐2‐ylidene; ppy: 2‐phenylpyridine), were prepared either by transmetallation from the corresponding silver carbene complexes or by the reaction of the corresponding acetate‐bridged palladacycle dimer with N‐heterocyclic carbene ligands in high yields. The palladium(II) complexes were characterized using elemental analyses, APCI‐MS, 1H NMR and 13C NMR spectroscopies. These complexes are efficient in the Suzuki–Miyaura coupling reaction between phenylboronic acid and aryl bromides.  相似文献   

20.
The bigger the better: The new well-defined [Pd(IPr*)(cin)Cl] pre-catalyst is described. This complex proves to be highly active in the Suzuki-Miyaura cross-coupling for the synthesis of tetra-ortho-substituted biaryls under mild conditions. IPr* is reported as the largest N-heterocyclic carbene (NHC) to date for [Pd(NHC)(cin)Cl] complexes, explaining the high reactivity observed for this complex in this challenging transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号