首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cu(II) complex of the ligand all-cis-2,4,6-triamino-1,3,5-trihydroxycyclohexane (TACI) is a very efficient catalyst of the cleavage of plasmid DNA in the absence of any added cofactor. The maximum rate of degradation of the supercoiled plasmid DNA form, obtained at pH 8.1 and 37 degrees C, in the presence of 48 microM TACI.Cu(II), is 2.3 x 10(-3) s(-1), corresponding to a half-life time of only 5 min for the cleavage of form I (supercoiled) to form II (relaxed circular). The dependence of the rate of plasmid DNA cleavage from the TACI.Cu(II) complex concentration follows an unusual and very narrow bell-like profile, which suggests an high DNA affinity of the complexes but also a great tendency to form unreactive dimers. The reactivity of the TACI.Cu(II) complexes is not affected by the presence of several scavengers for reactive oxygen species or when measured under anaerobic conditions. Moreover, no degradation of the radical reporter Rhodamine B is observed in the presence of such complexes. These results are consistent with the operation of a prevailing hydrolytic pathway under the normal conditions used, although the failure to obtain enzymatic religation of the linearized DNA does not allow one to rule out the occurrence of a nonhydrolytic oxygen-independent cleavage. A concurrent oxidative mechanism becomes competitive upon addition of reductants or in the presence of high levels of molecular oxygen: under such conditions, in fact, a remarkable increase in the rate of DNA cleavage is observed.  相似文献   

2.
Quercetin manganese(II) complexes were investigated focusing on its DNA hydrolytic activity. The complexes successfully promote the cleavage of plasmid DNA, producing single and double DNA strand breaks. The amount of conversion of supercoiled form (SC) of plasmid DNA to the nicked circular form (NC) depends on the concentration of the complex as well as the duration of incubation of the complexes with DNA. The maximum rate of conversion of the supercoiled form to the nicked circular form at pH 7.2 in the presence of 100 μM of the complexes is found to be 1.32 × 10−4 s−1. The hydrolytic cleavage of DNA by the complexes was supported by the evidence from free radical quenching, thiobarbituric acid-reactive substances (TBARS) assay and T4 ligase ligation.  相似文献   

3.
Three new metal-coordinating ligands, L(1), L(2), and L(3), have been prepared by appending o-, m-, and p-xylylguanidine pendants, respectively, to one of the nitrogen atoms of 1,4,7-triazacyclononane (tacn). The copper(II) complexes of these ligands are able to accelerate cleavage of the P-O bonds within the model phosphodiesters bis(p-nitrophenyl)phosphate (BNPP) and [2-(hydroxypropyl)-p-nitrophenyl]phosphate (HPNPP), as well as supercoiled pBR 322 plasmid DNA. Their reactivity toward BNPP and HPNPP is not significantly different from that of the nonguanidinylated analogues, [Cu(tacn)(OH(2))(2)](2+) and [Cu(1-benzyl-tacn)(OH(2))(2)](2+), but they cleave plasmid DNA at considerably faster rates than either of these two complexes. The complex of L(1), [Cu(L(1)H(+))(OH(2))(2)](3+), is the most active of the series, cleaving the supercoiled plasmid DNA (form I) to the relaxed circular form (form II) with a k(obs) value of (2.7 ± 0.3) × 10(-4) s(-1), which corresponds to a rate enhancement of 22- and 12-fold compared to those of [Cu(tacn)(OH(2))(2)](2+) and [Cu(1-benzyl-tacn)(OH(2))(2)](2+), respectively. Because of the relatively fast rate of plasmid DNA cleavage, an observed rate constant of (1.2 ± 0.5) × 10(-5) s(-1) for cleavage of form II DNA to form III was also able to be determined. The X-ray crystal structures of the copper(II) complexes of L(1) and L(3) show that the distorted square-pyramidal copper(II) coordination sphere is occupied by three nitrogen atoms from the tacn ring and two chloride ions. In both complexes, the protonated guanidinium pendants extend away from the metal and form hydrogen bonds with solvent molecules and counterions present in the crystal lattice. In the complex of L(1), the distance between the guanidinium group and the copper(II) center is similar to that separating the adjacent phosphodiester groups in DNA (ca. 6 ?). The overall geometry of the complex is also such that if the guanidinium group were to form charge-assisted hydrogen-bonding interactions with a phosphodiester group, a metal-bound hydroxide would be well-positioned to affect the nucleophilic attack on the neighboring phosphodiester linkage. The enhanced reactivity of the complex of L(1) at neutral pH appears to also be, in part, due to the relatively low pK(a) of 6.4 for one of the coordinated water molecules.  相似文献   

4.
Cu(II)-氨基酸-核苷酸三元配合物的合成和表征   总被引:4,自引:0,他引:4  
邵昌平  张凡  郭和夫 《化学学报》1993,51(10):973-977
合成和表征Na~2[Cu(L-Ala)~2(5'-GMP)].2H~2O、Na~2[Cu(L-Ala)~2(5'-IMP)].6H~2O、Na~2[Cu(L-His)(5'-GMP)Cl~2^2.2H~2O和Na~2[Cu(L-His)(5'-IMP)Cl~2].H~2O四个新的三元配合物, 其中两个L-Ala分子通过羧基O和α-氨基N与Cu(II)成反式配位, 一个L-His分子通过羧基O和咪唑环上的N与Cu(II)配位; 一个5'-GMP或5'-IMP分子嘌呤环上的N(7)与Cu(II)配位; 5'-GMP的磷酸根上可能存在强氢键, 而5'-IMP的磷酸根上不存在强氢键; 在含L-Ala三元配合物中, 5'-GMP的C(6)=0可能参与配位或形成强氢键, 而5'-IMP的C(6)=0不参与配位或形成配位或形成强氢键; 在含L-His三元配合物中, 5'-IMP的C(6)=0的表现则相反。  相似文献   

5.
The crystal structures and redox and UV-vis/EPR spectroscopic properties of two new mononuclear copper(II) complexes, [Cu(HL1)Cl2] (1) and [Cu(L1)Cl] (2), prepared through the reaction between copper(II) chloride and the ligand 2-[(bis(pyridylmethyl)amino)methyl]-4-methyl-6-formylphenol (HL1) under distinct base conditions, are reported along with solution studies. Also, we demonstrate that these CuII complexes are able to cleave unactivated peptide bonds from bovine serum albumin (BSA) and the thermostable enzyme Taq DNA polymerase at micromolar concentration, under mild pH and temperature conditions. The cleavage activity seems to be specific with defined proteolytic fragments appearing after protein treatment. The location of the specific cleavage sites was tentatively assigned to solvent-accessible portions of the protein. These are two of the most active Cu(II) complexes described to date, since their cleavage activity is detected in minutes and evidence is here presented for a hydrolytic mechanism mediating protein cleavage by these complexes.  相似文献   

6.
This paper reports on the synthesis and characterization of two new ternary copper(II) complexes: [Cu(doxycycline)(1,10-phenanthroline)(H(2)O)(ClO(4))](ClO(4)) (1) and [Cu(tetracycline)(1,10-phenanthroline)(H(2)O)(ClO(4))](ClO(4)) (2). These compounds exhibit a distorted tetragonal geometry around copper, which is coordinated to two bidentate ligands, 1,10-phenanthroline and tetracycline or doxycyline, a water molecule, and a perchlorate ion weakly bonded in the axial positions. In both compounds, copper(II) binds to tetracyclines via the oxygen of the hydroxyl group and oxygen of the amide group at ring A and to 1,10-phenanthroline via its two heterocyclic nitrogens. We have evaluated the binding of the new complexes to DNA, their capacity to cleave it, their cytotoxic activity, and uptake in tumoral cells. The complexes bind to DNA preferentially by the major groove, and then cleave its strands by an oxidative mechanism involving the generation of ROS. The cleavage of DNA was inhibited by radical inhibitors and/or trappers such as superoxide dismutase, DMSO, and the copper(I) chelator bathocuproine. The enzyme T4 DNA ligase was not able to relegate the products of DNA cleavage, which indicates that the cleavage does not occur via a hydrolytic mechanism. Both complexes present an expressive plasmid DNA cleavage activity generating single- and double-strand breaks, under mild reaction conditions, and even in the absence of any additional oxidant or reducing agent. In the same experimental conditions, [Cu(phen)(2)](2+) is approximately 100-fold less active than our complexes. These complexes are among the most potent DNA cleavage agents reported so far. Both complexes inhibit the growth of K562 cells with the IC(50) values of 1.93 and 2.59 μmol L(-1) for compounds 1 and 2, respectively. The complexes are more active than the free ligands, and their cytotoxic activity correlates with intracellular copper concentration and the number of Cu-DNA adducts formed inside cells.  相似文献   

7.
Phosphate esters are essential to any living organism and their specific hydrolysis plays an important role in many metabolic processes. As phosphodiester bonds can be extraordinary stable, as in DNA, great effort has been put into mimicking the active sites of hydrolytic enzymes which can easily cleave these linkages and were often found to contain one or more coordinated metal ions. With this in mind, we report micellar and vesicular Zn(II)-cyclen complexes which considerably promote the hydrolytic cleavage of native DNA and the activated model substrate bis(4-nitrophenyl)phosphate (BNPP). They are formed by self-assembly from amphiphilic derivatives of previously employed complexes in aqueous solution and therefore allow a simple and rapid connection of multiple active metal sites without great synthetic effort. Considering the hydrolytic cleavage of BNPP at 25 °C and pH 8, the micellar and vesicular metal catalysts show an increase of second-order rate constants (k(2)) by 4-7 orders of magnitude compared to the unimolecular complexes under identical conditions. At neutral pH, they produce the highest k(2) values reported so far. For pBR322 plasmid DNA, both a conversion of the supercoiled to the relaxed and linear form, and also a further degradation into smaller fragments by double strand cleavages could be observed after incubation with the vesicular Zn(II)-complexes. Finally, even the cleavage of nonactivated single-stranded oligonucleotides could be considerably promoted compared to background reaction.  相似文献   

8.
任蕤  杨频 《中国化学》1999,17(6):625-636
Hydrolysis of DNA is an important enzymatic reaction , but it is exceedingly difficult to mimic in the laboratory because of the stability of hydrolysis of DNA. In this paper, the cleavage activity of complexes formed between Cu(Ⅱ) and four different amino acid or amino acid methyl ester on DNA is studied by gel elec-trophoresis. It is found that DNA could be cleaved by Cu(Ⅱ)-L-His and Cu(Ⅱ)-L-His methyl ester complexes and the efficiency of cleavage is largely dependent on the metal ion-to-ligand ratio. Further experiments show that the cleavage of DNA mediated by Cu(Ⅱ)-L-His complexes occurs via a hydrolytic mechanism and the active chemical species that affects DNA cleavage is proposed to be MI2H and ML2H22 .  相似文献   

9.
Two highly charged cationic copper(II) complexes have been synthesized and characterized structurally and spectroscopically: [Cu(L1)2(Br)](ClO4)5 (1) and [Cu(L2)2(Br)](ClO4)5 (2) (L1= 5,5'-di(1-(triethylammonio)methyl)-2,2'-dipyridyl cation and L2= 5,5'-di(1-(tributylammonio)methyl)-2,2'-dipyridyl cation bidentate ligands). X-Ray structures show that Cu(II) ions in both complexes have a trigonal-bipyramidal CuN4Br-configuration. Two nitrogen atoms of the electropositive pendants and coordinated bromine atom basically array in a straight line. Their close distances of N[dot dot dot]Br atoms are 5.772 and 5.594 A, respectively, which is comparable to that of adjacent phosphodiesters in B-form DNA (ca. 6 A). In the absence of reducing agent, supercoiled plasmid DNA cleavage by the complexes has been performed and their hydrolytic mechanisms have been investigated. The pseudo-Michaelis-Menten kinetic parameters (kcat), 4.15 h(-1) for 1, 0.43 h(-1) for 2 and 0.61 h(-1) for [Cu(bipy)(NO3)2], were obtained. This result indicates that 1 exhibits markedly higher nuclease activity than its corresponding analogues. The high ability of DNA cleavage for 1 is attributed to the effective cooperation of the metal moiety and two positive pendants since the array of linear tri-binding sites matches with one of three phosphodiester backbones of nucleic acid.  相似文献   

10.
Two ligands with guanidinium/ammonium groups were synthesized and their copper complexes, [Cu(L1)Cl2](ClO4)2.H2O (1) and [Cu(L2)Cl2](ClO4)2 (2) (L1 = 5,5'-di[1-(guanidyl)methyl]-2,2'-bipyridyl cation and L2 = 5,5'-di[1-(amino)methyl]-2,2'-bipyridyl cation), were prepared to serve as nuclease mimics. X-Ray analysis revealed that Cu(II) ion in 1 has a planar square CuN2Cl2-configuration. The shortest distance between the nitrogen of guanidinium and copper atoms is 6.5408(5) A, which is coincident with that of adjacent phosphodiesters in DNA (ca. 6 A). In the absence of reducing agent, supercoiled plasmid DNA cleavage by the complexes were performed and their hydrolytic mechanisms were demonstrated with radical scavengers and T4 ligase. The pseudo-Michaelis-Menten kinetic parameters (kcat, KM) were calculated to be 4.42 h(-1), 7.46 x 10(-5) M for 1, and 4.21 h(-1), 1.07 x 10(-4) M for 2, respectively. The result shows that their cleavage efficiency is about 10-fold higher than the simple analogue [Cu(bipy)Cl2] (3) (0.50 h(-1), 3.5 x 10(-4) M). The pH dependence of DNA cleavage by 1 and its hydroxide species in solution indicates that mononuclear [Cu(L1)(OH)(H2O)]3+ ion is the active species. Highly effective DNA cleavage ability of is attributed to the effective cooperation of the metal moiety and two guanidinium pendants with the phosphodiester backbone of nucleic acid.  相似文献   

11.
The DNA-cleavage properties of the two copper(II) complexes, [Cu(mbpzbpy)Br(2)](H(2)O)(2.5) (1) and [Cu(mpzbpya)Cl](CH(3)OH) (2), obtained from the ligands 6,6'-bis(3,5-dimethyl-N-pyrazolmethyl)-2,2'-bipyridine) (mbpzbpy) and 6'-(3,5-dimethyl-N-pyrazolmethyl)-2,2'-bipyridine-6-carboxylic acid) (Hmpzbpya), respectively, are reported. Upon coordination to Cu(II) chloride in methanol, one arm of the ligand mbpzbpy is hydrolyzed to form mpzbpya. Under the same experimental conditions, the reaction of mbpzbpy with CuBr(2) does not lead to ligand hydrolysis. The ligand mpzbpya is coordinated to a copper(ii) ion generating a CuN(3)OCl chromophore, resulting in a distorted square-pyramidal environment, whereas with the N(4) mbpzbpy ligand, the Cu(II) ion is four-coordinated in a distorted square planar geometry. Both complexes promote the oxidative DNA cleavage of phiX174 phage DNA in the absence of reductant. The oxidative nature of the DNA cleavage reaction has been confirmed by religation and cell-transformation experiments. Studies using standard radical scavengers suggest the involvement of hydroxyl radicals in the oxidative cleavage of DNA. Although both compounds do convert form I (supercoiled) DNA to form II (nicked, relaxed form), only complex 1 is able to produce small amounts of form III (linearized DNA). This observation may be explained either by the attack of the copper(ii) complexes to only one single strand of DNA, or by a single cleavage event. Statistical analysis of relative DNA quantities present after the treatment with both copper(ii) complexes supports a random mode of DNA cleavage.  相似文献   

12.
Two novel binuclear complexes [Cu(2)(L)].(ClO(4))(2) (1) and [Zn(2)(L)].(ClO(4))(2) (2) were synthesized and crystallographically characterized {L = 1(4),5(4)-dimethyl-1(2),5(2)-dihydroxy-1(1,3),5(1,3)-dibenzene-3(1,4),7(1,4)-di-1,4,7-triazacyclononane}. The cation [Cu(2)(L)](2+) structure of 1 is similar to that of [Zn(2)(L)](2+) of 2. The central ion is bridged by the di-phenoxo of L and lies in a close to perfect square pyramidal geometry. 1 and 2 crystallize in the triclinic space group P1. The two complexes effectively promote the cleavage of plasmid DNA in the presence of activating agents at physiological pH and temperature. The pseudo-Michaelis-Menten kinetic parameters k(cat) = 1.61 h(-1), K(m) = 1.35 x 10(-5) M for complex 1 in the presence of mercaptoethanol; k(cat) = 2.48 h(-1), K(m) = 5.5 x 10(-5)M for complex 2 in the presence of hydrogen peroxide were obtained. The mechanism of plasmid DNA cleavage was studied by adding standard radical scavengers. DNA cleavage reaction by the binuclear Zn(II)/H(2)O(2) system is a hydrolytic mechanism.  相似文献   

13.
A novel hexadentate nitrogen donor [N6] macrocyclic ligand, i.e. 2,6,12,16,21,22-hexaaza-3,5,13,15-tetramethyl-4,14-diethyl-tricyclo-[15.3.1.1(7-11)]docosane-1(21),2,5,7(22),8,10,12,15,17,19-decaene (L), has been synthesized. Copper(II) complexes with this ligand have been prepared and subjected to elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, 1H NMR (ligand), IR, electronic, and EPR spectral studies. On the basis of molar conductance the complexes may be formulated as [Cu(L)X2] [X = Cl(-), Br(-), NO3(-) and CH3COO(-)] due to their nonelectrolytic nature in N,N'-dimethylformamide (DMF). All the complexes are of the high spin type and are six coordinated. On the basis of IR, electronic and EPR spectral studies tetragonal geometry has been assigned to the Cu(II) complexes. The interaction of these complexes with calf thymus DNA has been explored by using absorption, emission, viscosity measurements, electrochemical studies and DNA cleavage. All the experimental results suggest that the complexes bind to DNA and also promote the cleavage plasmid pBR 322, in the presence of H2O2 and ascorbic acid.  相似文献   

14.
Tu C  Shao Y  Gan N  Xu Q  Guo Z 《Inorganic chemistry》2004,43(15):4761-4766
A novel trinuclear copper(II) complex, Cu3-L (L = N,N,N',N',N' ',N' '-hexakis(2-pyridyl)-1,3,5-tris(aminomethyl)benzene), exhibited efficient oxidative strand scission of plasmid DNA. The solution behavior of the complex has been studied by potentiometric titration, UV spectroscopy, and cyclic voltammetry. The data showed that there are three redox-active copper ions in the complex with three types of bound water. The complex demonstrated a moderate binding ability for DNA. Cu3-L readily cleaves plasmid DNA in the presence of ascorbate to give nicked (form II) and then linear (form III) products, while the cleavage efficiency using H2O2 is less than by ascorbate, suggesting that the cleavage mode of the trinuclear complex is somewhat different from the traditional Fenton-like catalysis. Meanwhile, Cu3-L is far more efficient than its mononuclear analogue Cu-DPA (DPA = 2,2'-dipyridylamine) at the same [Cu2+] concentration, which suggests a possible synergy between the three or at least two Cu(II) centers in Cu3-L that contributes to its relatively high nucleolytic efficiency. Furthermore, the presence of standard radical scavengers does not have clear effect on the cleavage efficiency, suggesting the reactive intermediates leading to DNA cleavage are not freely diffusible radicals.  相似文献   

15.
The hydrolytic ability toward plasmid DNA of a mononuclear and a binuclear Zn(II) complex with two macrocyclic ligands, containing respectively a phenanthroline (L1) and a dipyridine moiety (L2), was analyzed at different pH values and compared with their activity in bis( p-nitrophenyl)phosphate (BNPP) cleavage. Only the most nucleophilic species [ZnL1(OH)]+ and [Zn2L2(OH)2]2+, present in solution at alkaline pH values, are active in BNPP cleavage, and the dinuclear L2 complex is remarkably more active than the mononuclear L1 one. Circular dichroism and unwinding experiments show that both complexes interact with DNA in a nonintercalative mode. Experiments with supercoiled plasmid DNA show that both complexes can cleave DNA at neutral pH, where the L1 and L2 complexes display a similar reactivity. Conversely, the pH-dependence of their cleavage ability is remarkably different. The reactivity of the mononuclear complex, in fact, decreases with pH while that of the dinuclear one is enhanced at alkaline pH values. The efficiency of the two complexes in DNA cleavage at different pH values was elucidated by means of a quantum mechanics/molecular mechanics (QM/MM) study on the adducts between DNA and the different complexed species present in solution.  相似文献   

16.
Five multinuclear cyclotriphosphazene ligands were synthesized and tested for their cleavage activities to plasmid DNA.All of these new compounds were confirmed by MS,~1H NMR,~(31)p NMR,~(13)C NMR and IR.Preliminary studies on the cleavage of pUC 19 DNA in the presence of metal complexes were performed.The results revealed that these complexes could act as powerful catalysts under physiological conditions.The complexes 3b+Cu can effectively cleave DNA to nicked form,giving hydrolysis rate constant of 0.0...  相似文献   

17.
Seven new copper(II) complexes of type [Cu(A)(L)]?H2O (A = sparfloxacin, ciprofloxacin, levofloxacin, gatifloxacin, pefloxacin, ofloxacin, norfloxacin; L = 5‐[(3‐chlorophenyl)diazenyl]‐4‐hydroxy‐1,3‐thiazole‐2(3H)‐thione) were synthesized and characterized using elemental and thermogravimetric analyses, and electronic, electron paramagnetic resonance (EPR), Fourier transform infrared and liquid chromatography–mass spectroscopies. Tetrahedral geometry around copper is assigned in all complexes using EPR and electronic spectral analyses. All complexes were investigated for their interaction with herring sperm DNA utilizing absorption titration (Kb = 1.27–3.13 × 105 M?1) and hydrodynamic volume measurement studies. The studies suggest the classical intercalative mode of DNA binding. The cleavage reaction on pUC19 DNA was monitored by agarose gel electrophoresis. The results indicate that the Cu(II) complexes can more effectively promote the cleavage of plasmid DNA. The superoxide dismutase mimic activity of the complexes was evaluated by nitroblue tetrazolium assay, and the complexes catalysed the dismutation of superoxide at pH = 7.8 with IC50 values in the range 0.597–0.900 μM. The complexes were screened for their in vitro antibacterial activity against five pathogenic bacteria. All the complexes are good cytotoxic agents and show LC50 values ranging from 5.559 to 11.912 µg ml?1. All newly synthesized Cu(II) complexes were also evaluated for their in vitro antimalarial activity against Plasmodium falciparum strain (IC50 = 0.62–2.0 µg ml?1). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The copper(II) complex [Cu(dppz)(2)Cl]Cl () has been prepared, structurally characterized and its DNA binding and cleavage properties studied (dppz, dipyridophenazine). Crystal structure of 1xdppzxH(2)O shows the presence of the monocationic copper(II) complex containing two dppz ligands and one chloride in the five coordinate structure. While one bidentate chelating dppz ligand occupies the basal plane, the other dppz ligand shows an axial/equatorial mode of bonding. The chloride ligand binds at the basal plane. The complex crystallizes with dppz and water as lattice molecules. The dppz moieties in the metal-bound and free forms are involved in pi-pi stacking interactions. The one-electron paramagnetic complex shows a visible spectral d-d band at 707 nm in DMF and displays quasireversible cyclic voltammetric response for the Cu(II)/Cu(I) couple near 0.1 V vs. SCE in DMF-0.1 M TBAP. The complex which is an avid binder to calf thymus DNA giving a binding constant (K(b)) value of 2.0 x 10(4) M(-1) in DMF-Tris buffer, cleaves supercoiled pUC19 DNA in an oxidative manner in the presence of mercaptopropionic acid (MPA) as a reducing agent or on photo irradiation at 312 nm. Control experiments show major groove binding and DNA cleavage via the formation of hydroxyl radical in the presence of MPA and by singlet oxygen in the photocleavage reaction. The complex exhibits significant hydrolytic cleavage of DNA in the dark in the absence of any additives at a rate of approximately 3.0 h(-1). The hydrolytic nature of the DNA cleavage is evidenced from the T4 ligase experiments converting the nicked circular form to its original supercoiled form quantitatively. Complex presents a rare example of copper-based major groove directing efficient synthetic hydrolase.  相似文献   

19.
The Schiff base ligand, N,N′-bis-(4-isopropylbenzaldimine)-1,2-diaminoethane (L), obtained by the condensation of 4-isopropylbenzaldehyde and 1,2-diaminoethane, has been used to synthesize the complexes of the type [ML2X2] [M = Co(II), Ni(II) and Zn(II); X = Cl and OAc]. The newly synthesized ligand (L) and its complexes have been characterized on the basis of elemental analyses, mass, 1H and 13C-NMR, molar conductance, IR, UV–vis, magnetic moment, CV and thermal analyses, powder XRD and SEM. IR spectral data show that the ligand is coordinated to the metal ions in a bidentate manner. The geometrical structures of these complexes are found to be octahedral. Interestingly, reaction with Cu(II) ion with this ligand undergoes hydrolytic cleavage to form ethylenediamine copper(II) complex and the corresponding aldehyde. The antimicrobial results indicate that the chloro complexes exhibit more activity than the acetato complexes. The complexes bind to CT–DNA by intercalation modes. Novel chloroform soluble ZnL2Cl2 complex exhibits tremendous antimicrobial, DNA binding and cleaving properties.  相似文献   

20.
Novel 1,7-dioxa-4,10-diazacyclododecane artificial receptors with two pendant aminoethyl (3) or guanidinoethyl (4) side arms have been synthesized. Spectroscopy, including fluorescence and CD spectroscopy, of the interactions of 3, 4, and their copper(II) complexes with calf thymus DNA indicated that the DNA binding affinity of these compounds follows the order Cu(2+)-4>Cu(2+)-3>4>3, and the binding constants of Cu(2+)-3 are Cu(2+)-4 are 7.2x10(4) and 8.7x10(4) M(-1), respectively. Assessment by agarose gel electrophoresis of the plasmid pUC 19 DNA cleavage activity in the presence of the receptors showed that the complexes Cu(2+)-3 and Cu(2+)-4 exhibit powerful supercoiled DNA cleavage efficiency. Kinetic data of DNA cleavage promoted by Cu(2+)-3 and Cu(2+)-4 under physiological conditions fit to a saturation kinetic profile with kmax values of 0.865 and 0.596 h(-1), respectively, which give about 10(8)-fold rate acceleration over uncatalyzed supercoiled DNA. This acceleration is due to efficient cooperative catalysis of the copper(II) center and the functional (diamino or bisguanidinium) groups. In-vitro cytotoxic activities toward murine melanoma B16 cells and human leukemia HL-60 cells were also examined: Cu(2+)-4 shows the highest activity with IC(50) values of 1.62x10(-4) and 1.19x10(-5) M, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号