首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a continuation of the study on the construction of the multidecker aromatic compounds with pi-pi interactions, the anthracene derivatives 9,10-dimethylanthracene (dman), 9,10-diphenylanthracene (dpan), and 7,12-dimethylbenz[a]anthracene (dmban) have been studied toward complexation with the silver(I) ion. The crystal structures of [Ag(dman)(0.5)(p-xylene)(ClO(4))], [Ag(2)(dpan)(0.5)(C(6)H(6))(0.5)(CF(3)SO(3))(2)], and [Ag(2)(dmban)(2)(ClO(4))(2)](p-xylene), together with the metal-free ligand dpan, have been determined by single-crystal X-ray diffraction. These pi-electron-rich aromatic compounds are found to have great promise as an approach to the effective self-assembly of high nuclearity in a multilayer fashion.  相似文献   

2.
Studies on the subtle effects and roles of polyatomic anions in the self-assembly of a series of AgX complexes with 2,4'-Py(2)S (X(-) = NO(3)(-), BF(4)(-), ClO(4)(-), PF(6)(-), CF(3)CO(2)(-), and CF(3)SO(3)(-); 2,4'-Py(2)S = 2,4'-thiobis(pyridine)) have been carried out. The formation of products appears to be primarily associated with a suitable combination of the skewed conformers of 2,4'-Py(2)S and a variety of coordination geometries of Ag(I) ions. The molecular construction via self-assembly is delicately dependent upon the nature of the anions. Coordinating anions afford the 1:1 adducts [Ag(2,4'-Py(2)S)X] (X(-) = NO(3)(-) and CF(3)CO(2)(-)), whereas noncoordinating anions form the 3:4 adducts [Ag(3)(2,4'-Py(2)S)(4)]X(3) (X(-) = ClO(4)(-) and PF(6)(-)). Each structure seems to be constructed by competition between pi-pi interactions of 2,4'-Py(2)S spacers vs Ag.X interactions. For ClO(4)(-) and PF(6)(-), an anion-free network consisting of linear Ag(I) and trigonal Ag(I) in a 1:2 ratio has been obtained whereas, for the coordinating anions NO(3)(-) and CF(3)CO(2)(-), an anion-bridged helix sheet and an anion-bridged cyclic dimer chain, respectively, have been assembled. For a moderately coordinating anion, CF(3)SO(3)(-), the 3:4 adduct [Ag(3)(2,4'-Py(2)S)(4)](CF(3)SO(3))(3) has been obtained similarly to the noncoordinating anions, but its structure is a double strand via both face-to-face (pi-pi) stackings and Ag.Ag interactions, in contrast to the noncoordinating anions. The anion exchanges of [Ag(3)(2,4'-Py(2)S)(4)]X(3) (X(-) = BF(4)(-), ClO(4)(-), and PF(6)(-)) with BF(4)(-), ClO(4)(-), and PF(6)(-) in aqueous media indicate that a [BF(4)(-)] analogue is isostructural with [Ag(3)(2,4'-Py(2)S)(4)]X(3) (X(-) = ClO(4)(-) and PF(6)(-)). Furthermore, the anion exchangeability for the noncoordinating anion compounds and the X-ray data for the coordinating anion compounds establish the coordinating order to be NO(3)(-) > CF(3)CO(2)(-) > CF(3)SO(3)(-) > PF(6)(-) > ClO(4)(-) > BF(4)(-).  相似文献   

3.
This paper reports novel silver polymers, built with iodine--silver interactions, with interesting structural motifs. Four silver(I) coordination polymers of the aryl iodide derived ligands, triiodobenzoic acid (HL1), tris(4-iodophenyl)amine (L2), and 5,7-diiodo-8-hydroxyquinoline (HL3), have been synthesized and characterized by X-ray crystallography. Treatment of Ag(CH3COO) with HL1 yielded [Ag(L1)] (1), whose structural analysis revealed 2D layers of ladders connected through weak Ag...I interaction. Reactions of AgClO4 and L2 in benzene and nitrobenzene afforded, respectively, two different products, [Ag(L2)(H2O)]ClO4.C6H6(2) and [Ag(L2)(ClO4)](3). While the structure of 2 could be described as a 2D layer of square and octagons perpendicular to [100], complex 3 is formed by 2D layers of the same topology of 2 (8(2).4), alternating as ABAB. In contrast, complex 4, [Ag2(H2L3)(CF3SO3)3], obtained by reaction of Ag(CF3SO3) and HL3, was found to consist of a 2D layer based on columnar arrays AgH2L3-Ag(triflate). The solid-state FT-IR and 109Ag NMR spectra of theses complexes are discussed on the basis of their crystal structures.  相似文献   

4.
Three angular ditopic ligands (1,3-bis(benzimidazol-1-ylmethyl)-4,6-dimethylbenzene L(1), 1,3-bis(benzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene L(2), and 1,4-bis(benzimidazol-1-ylmethyl)-2,3,5,6-tetramethylbenzene L(3)) and one tripodal ligand 1,3,5-tris(benzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene L(4) have been prepared. Reaction of these shape-specific designed ligands with different metal salts affords a series of discrete molecular architectures: [Ag(2)L(1)(2)](BF(4))(2) 1, [Ag(2)L(2)(2)](CF(3)SO(3))(2) 2, [CF(3)SO(3)(-) subset Ag(2)L(3)(2)]CF(3)SO(3) 3, [CF(3)SO(3)(-) subset Ag(2)L(3)(3)]CF(3)SO(3) 4, [ClO(4)(-) subset Cu(2)L(2)(4)](ClO(4))(3) 5, [4H(2)O subset Ni(2)L(2)(4)Cl(4)].6H(2)O 6, [BF(4)(-) subset Ag(3)L(4)(2)](BF(4))(2) 7, [ClO(4)(-) subset Ag(3)L(4)(2)](ClO(4))(2) 8, and [CuI(3)(2-) subset Cu(3)L(4)(2)](2)[Cu(2)I(4)] 9. The compounds were characterized by elemental analysis, ESI-MS, IR, and NMR spectroscopy, and X-ray crystallography. 1 is a dinuclear metallacycle with 2-fold rotational symmetry in which two syn-conformational L(1) ligands are connected by two linearly coordinated Ag(+) ions. 2 and 3 are structurally related, consisting of rectangular structures assembled from two linearly coordinated Ag(+) ions and two L(2) or L(3) ligands. The structure of 4 is a trigonal prismatic box consisting of two Ag(+) ions in trigonal planar coordination linked by three L(3) ligands, while the structures of 5 and 6 are tetragonal prismatic cages constructed by two square planar Cu(2+) or Ni(2+) ions linked by four L(2) ligands. The topologies of 7-9 are similar to that of 4; however, these three structures are assembled from three linearly coordinated Ag(+) or Cu(+) ions and two tripodal ligands, representing an alternative strategy to assembling a trigonal prism. (1)H NMR and ESI-MS were utilized to elucidate the solution structures of these macrocycles.  相似文献   

5.
The two flexible multidentate ligands 1,3-bis(8-thioquinolyl)propane (C3TQ) and 1,4-bis(8-thioquinolyl)butane (C4TQ) were reacted with AgX (X = CF(3)SO(3)(-) or ClO(4)(-)) to give four new complexes: ([Ag(C3TQ)](ClO(4)))(n)() 1, ([Ag(C3TQ)](CF(3)SO(3)))(n)() 2, ([Ag(2)(C4TQ)(CF(3)SO(3))(CH(3)CN)](CF(3)SO(3)))(n)() 3, and ([Ag(C4TQ)](ClO(4)))(n)() 4. All complexes have been characterized by elemental analysis, IR, and (1)H NMR spectroscopy. Single-crystal X-ray analysis showed that chain structures form for all complexes in which the quinoline rings interact via various intra- (1) or intermolecular (2, 3, and 4) pi-pi aromatic stacking interactions, which in the latter cases results in multidimensional structures. Additional weak interactions, such as Ag.O and Ag.S contacts and C-H.O hydrogen bonding, are also present and help form stable, crystalline materials. It was found that the (CH(2))(n) spacers (n = 3 or 4) affect the orientation of the two terminal quinolyl rings, thereby significantly influencing the specific framework structure that forms. If the same ligand is used, on the other hand, then the different counteranions have the greatest effect on the final structure.  相似文献   

6.
Metal complexation studies were performed with the ditopic pyrimidine-hydrazone (pym-hyz) strand 6-hydroxymethylpyridine-2-carboxaldehyde (2-methyl-pyrimidine-4,6-diyl)bis(1-methylhydrazone) (1) and Pb(ClO(4))(2)·3H(2)O, Pb(SO(3)CF(3))(2)·H(2)O, Zn(SO(3)CF(3))(2), and Zn(BF(4))(2) to examine the ability of 1 to form various supramolecular architectures. X-ray crystallographic and NMR studies showed that coordination of the Pb(II) salts with 1 on a 2:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2) resulted in the linear complexes [Pb(2)1(ClO(4))(4)] (2), [Pb(2)1(ClO(4))(3)(H(2)O)]ClO(4) (3), and [Pb(2)1(SO(3)CF(3))(3)(H(2)O)]SO(3)CF(3) (4). Two unusually distorted [2 × 2] grid complexes, [Pb1(ClO(4))](4)(ClO(4))(4) (5) and [Pb1(ClO(4))](4)(ClO(4))(4)·4CH(3)NO(2) (6), were formed by reacting Pb(ClO(4))(2)·6H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2). These grids formed despite coordination of the hydroxymethyl arms due to the large, flexible coordination sphere of the Pb(II) ions. A [2 × 2] grid complex was formed in solution by reacting Pb(SO(3)CF(3))(2)·H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN as shown by (1)H NMR, microanalysis, and ESMS. Reacting the Zn(II) salts with 1 on a 2:1 metal/ligand ratio gave the linear complexes [Zn(2)1(H(2)O)(4)](SO(3)CF(3))(4)·C(2)H(5)O (7) and [Zn(2)1(BF(4))(H(2)O)(2)(CH(3)CN)](BF(4))(3)·H(2)O (8). (1)H NMR studies showed the Zn(II) and Pb(II) ions in these linear complexes were labile undergoing metal ion exchange. All of the complexes exhibited pym-hyz linkages in their cisoid conformation and binding between the hydroxymethyl arms and the metal ions. No complexes were isolated from reacting either of the Zn(II) salts with 1 on a 1:1 metal/ligand ratio, due to the smaller size of the Zn(II) coordination sphere as compared to the much larger Pb(II) ions.  相似文献   

7.
Three novel silver(I) complexes with benzopyrene derivatives were synthesized and characterized in this paper. Treatment of AgClO(4)*H(2)O with 7-methylbenzo[a]pyrene (L(1)) afforded [Ag(2)(L(1))(toluene)(0.5)(ClO(4))(2)](n)() (1) which exhibits a 2-D sheet structure with double-stranded helical motifs. Reaction of AgCF(3)SO(3) with dibenzo[b,def ]chrysene (L(2)) gave rise to an unprecedented cocrystallization structure, ([Ag(2)(L(2))(CF(3)SO(3))(2)][Ag(2)(toluene)(2)(CF(3)SO(3))(2)])(n)() (2), formed by a 2-D neutral lamellar polymer and a 1-D neutral rodlike one. The ligand benzo[e]pyrene (L(3)) coordinated to silver(I) ions generating a closed triple-decker tetranuclear complex [Ag(4)(L(3))(4)(p-xylene)(ClO(4))(4)] (3) which can be regarded as a stacking polymer owing to existing intermolecular pi-pi stack interactions. The structural diversity of the silver(I) coordination polymers with polycyclic aromatic hydrocarbons is not only related to the stacking patterns of free polycyclic aromatic hydrocarbons in the crystalline state, but also the geometric shapes of the molecules for these free ligands. In addition, the coordination of solvents to metal ions plays a crucial role in the formation of the unprecedented coordination polymeric architectures. The ESR spectroscopic results, conductivity, and synthesis properties are also discussed.  相似文献   

8.
A study of the reversible CO2 fixation by a series of macrocyclic dicopper complexes is described. The dicopper macrocyclic complexes [Cu2(OH)2(Me2p)](CF3SO3)2, 1(CF3SO3)2, and [Cu2(mu-OH)2(Me2m)](CF3SO3)2, 2(CF3SO3)2, (Scheme 1) containing terminally bound and bridging hydroxide ligands, respectively, promote reversible inter- and intramolecular CO2 fixation that results in the formation of the carbonate complexes [{Cu2(Me2p)}2(mu-CO3)2](CF3SO3)4, 4(CF3SO3)4, and [Cu2(mu-CO3)(Me2m)](CF3SO3)2, 5(CF3SO3)2. Under a N2 atmosphere the complexes evolve CO2 and revert to the starting hydroxo complexes 1(CF3SO3)2 and 2(CF3SO3)2, a reaction the rate of which linearly depends on [H2O]. In the presence of water, attempts to crystallize 5(CF3SO3)2 afford [{Cu2(Me2m)(H2O)}2(mu-CO3)2](CF3SO3)4, 6(CF3SO3)4, which appears to rapidly convert to 5(CF3SO3)2 in acetonitrile solution. [Cu2(OH)2(H3m)]2+, 7, which contains a larger macrocyclic ligand, irreversibly reacts with atmospheric CO2 to generate cagelike [{Cu2(H3m)}2(mu-CO3)2](ClO4)4, 8(ClO4)4. However, addition of 1 equiv of HClO4 per Cu generates [Cu2(H3m)(CH3CN)4]4+ (3), and subsequent addition of Et3N under air reassembles 8. The carbonate complexes 4(CF3SO3)4, 5(CF3SO3)2, 6(CF3SO3)4, and 8(ClO4)4 have been characterized in the solid state by X-ray crystallography. This analysis reveals that 4(CF3SO3)4, 6(CF3SO3)4, and 8(ClO4)4 consist of self-assembled molecular boxes containing two macrocyclic dicopper complexes, bridged by CO32- ligands. The bridging mode of the carbonate ligand is anti-anti-mu-eta1:eta1 in 4(CF3SO3)4, anti-anti-mu-eta2:eta1 in 6(CF3SO3)4 and anti-anti-mu-eta2:eta2 in 5(CF3SO3)2 and 8(ClO4)4. Magnetic susceptibility measurements on 4(CF3SO3)4, 6(CF3SO3)4, and 8(ClO4)4 indicate that the carbonate ligands mediate antiferromagnetic coupling between each pair of bridged CuII ions (J = -23.1, -108.3, and -163.4 cm-1, respectively, H = -JS1S2). Detailed kinetic analyses of the reaction between carbon dioxide and the macrocyclic complexes 1(CF3SO3)2 and 2(CF3SO3)2 suggest that it is actually hydrogen carbonate formed in aqueous solution on dissolving CO2 that is responsible for the observed formation of the different carbonate complexes controlled by the binding mode of the hydroxy ligands. This study shows that CO2 fixation can be used as an on/off switch for the reversible self-assembly of supramolecular structures based on macrocyclic dicopper complexes.  相似文献   

9.
The new ligand 2-pyridinyl-3-pyridinylmethanone (L) proves to be an excellent building block for the construction of single-strand helical architectures. A series of helical complexes have been synthesized by the reaction of L with various metal salts, in which L exhibits three kinds of coordination modes involving two kinds of bridging conformations, resulting in four types of single-strand helical chains. The counter anions in the series of 2(1) helical silver(I) complexes {[Ag(L)]X}(infinity)(X = NO(3), 1; PF(6), 2; BF(4), 3; ClO(4), 4; CF(3)CO(2), 5; CF(3)SO(3), 6) are fully or partially embedded inside the cylindrical helix, and the pitch length corresponds not only to the size of the anion but also to its manner of docking into the groove of the helix. Formation of the helical structure in {[Cu(L)(CH(3)CN)(H(2)O)(ClO(4))]ClO(4)}(infinity)(7) is driven by Ow-H...O (perchlorate) hydrogen bonding that leads to a stable triangular motif which rigidly fixes the configuration of the helix. In {[Co(L)(H(2)O)(3)](ClO(4))(2).2H(2)O}(infinity)(8) and {[Zn(L)(H(2)O)(3)](CF(3)SO(3))(2).H(2)O}(infinity)(9), similar helical chains without anion embedment suggest that the pitch length can be tuned by the size of metal cations. Notably, complex {[Ag(L)]CF(3)SO(3)}(infinity)(10), a conformational polymorph of , has a 4(1) helix induced by argentophilic interaction.  相似文献   

10.
Four new potentially polytopic nitrogen donor ligands based on the 1,3,5-triazine fragment, L(1)-L(4) (L(1) = 2-chloro-4,6-di(1H-pyrazol-1-yl)-1,3,5-triazine, L(2) = N,N'-bis(4,6-di(1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)ethane-1,2-diamine, L(3) = 2,4,6-tris(tri(1H-pyrazol-1-yl)methyl)-1,3,5-triazine, and L(4) = 2,4,6-tris(2,2,2-tri(1H-pyrazol-1-yl)ethoxy)-1,3,5-triazine) have been synthesized and characterized. The X-ray crystal structure of L(3) confirms that its molecular nature consists of a 1,3,5-triazine ring bearing three tripodal tris(pyrazolyl) arms. L(1), L(2), and L(4) react with Cu(I), Cu(II), Pd(II) and Ag(I) salts yielding mono-, di-, and oligonuclear derivatives: [Cu(L(1))(Cy(3)P)]ClO(4), [{Ag(2)(L(2))}(CF(3)SO(3))(2)]·H(2)O, [Cu(2)(L(2))(NO(3))(2)](NO(3))(2)·H(2)O, [Cu(2)(L(2))(CH(3)COO)(2)](CH(3)COO)(2)·3H(2)O, [Pd(2)(L(2))(Cl)(4)]·2H(2)O, [Ru(L(2))(Cl)(OH)]·CH(3)OH, [Ag(3)(L(4))(2)](CF(3)SO(3))(3) and [Ag(3)(L(4))(2)](BF(4))(3). The interaction of L(3) with Ag(I), Cu(II), Zn(II) and Ru(II) complexes unexpectedly produced the hydrolysis of the ligand with formation, in all cases, of tris(pyrazolyl)methane (TPM) derivatives. In detail, the already known [Ag(TPM)(2)](CF(3)SO(3)) and [Cu(TPM)(2)](NO(3))(2), as well as the new [Zn(TPM)(2)](CF(3)SO(3))(2) and [Ru(TMP)(p-cymene)]Cl(OH)·2H(2)O complexes have been isolated. Single-crystal XRD determinations on the latter derivatives confirm their formulation, evidencing, for the Ru(II) complex, an interesting supramolecular arrangement of the anions and crystallization water molecules.  相似文献   

11.
Three luminescent silver(I)-oligo(phenylenevinylene) complexes, [Ag2(bmsb)(ClO4)2] (1), [Ag2(bmsb)(H2O)4](BF4)2 (2), and [Ag2(bdb)(CF3SO3)2] (3) (bmsb = 1, 4-bis(methylstyryl)benzene, bdb = 4,4'-bis(2, 5-dimethylstryryl)biphenyl), have been synthesized and structurally characterized. Complexes 1 and 2 are 2D networks with unique metallocyclophane motifs. Complex 3 affords a 2D zigzag sheet, in which silver triflates form tubelike double chains and bdb molecules act as linkages. Complex 2 exhibits high electric conductivity because of columnar aromatic stackings formed through intra- and intermolecular pi-pi interactions. Complexes 1-3 in the solid state exhibit luminescence, of which excitation and emission maxima are shifted to longer wavelength as compared to those of the corresponding metal-free ligands.  相似文献   

12.
Seward C  Chan J  Song D  Wang S 《Inorganic chemistry》2003,42(4):1112-1120
The reaction of AgX, where X = trifluoroacetate (CF(3)CO(2)(-), tfa), nitrate (NO(3)(-)), trifluoromethanesulfonate (triflate, CF(3)SO(3)(-), OTf), hexafluorophosphate (PF(6)(-)), or perchlorate (ClO(4)(-)), with 2,2',3' '-tripyridylamine (tpa) yields five novel silver(I) complexes, which have been structurally characterized. The five complexes have the same 1:1 stoichiometry of Ag/tpa but exhibit different modes of coordination, depending upon the counterion present in the compound. Compound 1, [Ag(tpa)(tfa)](n)(), forms a 1D coordination polymer of [Ag(tpa)(tfa)](2) dimer units linked through bridging tfa counterions. Compound 2, [Ag(tpa)(CH(3)CN)(NO(3))](n), forms a zigzag chain 1D coordination polymer exclusively through Ag-N bonds. In compounds 1 and 2, each tpa ligand is bound to two Ag(I) ions via a 2-py and a 3-py group. Compound 3, [Ag(tpa)(OTf)](n), forms a ribbonlike 1D coordination polymer, in which each tpa ligand binds to three different silver centers via all three pyridyl groups, and the counterion remains coordinated to the Ag(I) center. Compounds 4, [Ag(tpa)(CH(3)CN)](n)(PF(6))(n), and 5, [Ag(tpa)(CH(3)CN)](n)() (ClO(4))(n), display ribbonlike structures resembling that of 3, except that the counterions are not coordinated. All complexes are luminescent in acetonitrile solution, with emission maxima in the near-UV region (lambda(max) = 366, 368, 367, 367, and 368 nm for 1-5, respectively). At 77 K, the emission maxima are red-shifted to lambda(max) = 452, 453, 450, 450, and 454 nm for 1-5, respectively.  相似文献   

13.
The reaction of new dinuclear gold(I) organometallic complexes containing mesityl ligands and bridging bidentate phosphanes [Au(2)(mes)(2)(μ-LL)] (LL=dppe: 1,2-bis(diphenylphosphano)ethane 1a, and water-soluble dppy: 1,2-bis(di-3-pyridylphosphano)ethane 1b) with Ag(+) and Cu(+) lead to the formation of a family of heterometallic clusters with mesityl bridging ligands of the general formula [Au(2)M(μ-mes)(2) (μ-LL)][A] (M=Ag, A=ClO(4)(-), LL=dppe 2a, dppy 2b; M=Ag, A=SO(3)CF(3)(-), LL=dppe 3a, dppy 3b; M=Cu, A=PF(6)(-), LL=dppe 4a, dppy 4b). The new compounds were characterized by different spectroscopic techniques and mass spectrometry The crystal structures of [Au(2)(mes)(2)(μ-dppy)] (1b) and [Au(2)Ag(μ-mes)(2)(μ-dppe)][SO(3)CF(3)] (3a) were determined by a single-crystal X-ray diffraction study. 3a in solid state is not a cyclic trinuclear Au(2)Ag derivative but it gives an open polymeric structure instead, with the {Au(2)(μ-dppe)} fragments "linked" by {Ag(μ-mes)(2)} units. The very short distances of 2.7559(6)?? (Au-Ag) and 2.9229(8)?? (Au-Au) are indicative of gold-silver (metallophilic) and aurophilic interactions. A systematic study of their luminescence properties revealed that all compounds are brightly luminescent in solid state, at room temperature (RT) and at 77?K, or in frozen DMSO solutions with lifetimes in the microsecond range and probably due to the self-aggregation of [Au(2)M(μ-mes)(2)(μ-LL)](+) units (M=Ag or Cu; LL=dppe or dppy) into an extended chain structure, through Au-Au and/or Au-M metallophilic interactions, as that observed for 3a. In solid state the heterometallic Au(2)M complexes with dppe (2a-4a) show a shift of emission maxima (from ca. 430 to the range of 520-540?nm) as compared to the parent dinuclear organometallic product 1a while the complexes with dppy (2b-4b) display a more moderate shift (505 for 1b to a max of 563?nm for 4b). More importantly, compound [Au(2)Ag(μ-mes)(2)(μ-dppy)]ClO(4) (2b) resulted luminescent in diluted DMSO solution at room temperature. Previously reported compound [Au(2)Cl(2)(μ-LL)] (LL dppy 5b) was also studied for comparative purposes. The antimicrobial activity of 1-5 and Ag[A] (A=ClO(4)(-), SO(3)CF(3)(-)) against gram-positive and gram-negative bacteria and yeast was evaluated. Most tested compounds displayed moderate to high antibacterial activity while heteronuclear Au(2)M derivatives with dppe (2a-4a) were the more active (minimum inhibitory concentration 10 to 1?μg?mL(-1)). Compounds containing silver were ten times more active to gram-negative bacteria than the parent dinuclear compound 1a or silver salts. Au(2)Ag compounds with dppy (2b, 3b) were also potent against fungi.  相似文献   

14.
Dong YB  Sun T  Ma JP  Zhao XX  Huang RQ 《Inorganic chemistry》2006,45(26):10613-10628
Four new oxadiazole-bridging ligands (L1-L4) were designed and synthesized by the reaction of 2,5-bis(2-hydroxyphenyl)-1,3,4-oxadiazole with isonicotinoyl chloride and nicotinoyl chloride, respectively. L1 and L3 are unsymmetric single-armed ligands (4- or 3-pyridinecarboxylate arm), and L2 and L4 are symmetric double-armed ligands (4- or 3-pyridinecarboxylate arms). Nine new complexes, [Ag(L1)]PF6.CH3OH (1), [Ag(L1)]ClO4.CH3OH (2), Cu(L2)(NO3)2.2(CH2Cl2) (3), [Cu(L2)2](ClO4)2.2(CH2CCl2) (4), Cu(L2)Cl2 (5), [Cu4(L3)2(H2O)2](L3)4(ClO4)4 (6), [Ag(L4)(C2H5OH)]ClO4 (7), [Ag(L4)(C2H5OH)]BF4 (8), and [Ag(L4)(CH3OH)]SO3CF3 (9), were isolated from the solution reactions based on these four new ligands, respectively. L1, L2, and L3 act as convergent ligands and bind metal ions into discrete molecular complexes. In contrast, L4 exhibits a divergent spacer to link metal ions into one-dimensional coordination polymers. New coordination compounds were fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. In addition, the luminescent and electrical conductive properties of these new compounds were investigated.  相似文献   

15.
Addition of two equivalents of diphenylthiomethylphosphine (PPh2-CH2SPh) to the starting materials [Au(tht)2]A (tht = tetrahydrothiophene), AgCF3SO3, or [Cu(CH3CN)4]CF3SO3 produces the mononuclear derivatives [M(PPh2CH2SPh)2]A (M = Au, A = CF3SO3 (1a); M = Au, A = ClO4 (1b); M = Ag, A = CF3SO3 (4); M = Cu, A = CF3SO3 (5)) which are able to form the heterodinuclear complexes [AuM'(PPh2CH2SPh)2](CF3SO3)2 (M' = Ag (2), Cu (3)) with a P-Au-P environment. If the starting gold complex is [Au(C6F5)(tht)], reaction with the phosphine produces [Au(C6F5)-(PPh2CH2SPh)] (6) from which, by reaction with AgCF3SO3 or [Cu(CH3CN)4]CF3SO3, the "snake"-type linear complexes [Au2M(C6F5)2-(PPh2CH2SPh)2]CF3SO3 (M = Ag (7), Cu (8)) are obtained. If the silver starting complex is AgCF3CO2, reaction in a 1:1 ratio gives the tetranuclear complex [Au2Ag2(C6F5)2(PPh2CH2SPh)2-(CF3CO2)2] (9). When the molar ratio is 1:2 the trinuclear complex [AuAg2(C6F5) (CF3CO2)2(PPh2CH2SPh)] (10) is obtained. According to ab initio calculations, the presence of only one gold atom is enough to induce metallophilic attractions in the group congeners, and this effect can be modulated depending on the gold ligand.  相似文献   

16.
Metal complexation studies were performed with AgSO(3)CF(3) and AgBF(4) and the ditopic pyrimidine-hydrazone ligand 6-(hydroxymethyl)pyridine-2-carboxaldehyde (2-methylpyrimidine-4,6-diyl)bis(1-methylhydrazone) (1) in both CH(3)CN and CH(3)NO(2) in a variety of metal-to-ligand ratios. The resulting complexes were studied in solution by NMR spectroscopy and in the solid state by X-ray crystallography. Reacting either AgSO(3)CF(3) or AgBF(4) with 1 in either CH(3)CN or CH(3)NO(2) in a 1:1 metal-to-ligand ratio produced a double helicate in solution. This double helicate could be converted into a linear complex by increasing the metal-to-ligand ratio; however, the degree of conversion depended on the solvent and counteranion used. Attempts to crystallize the linear AgSO(3)CF(3) complex resulted in crystals with the dimeric structure [Ag(2)1(CH(3)CN)(2)](2)(SO(3)CF(3))(4) (2), while attempts to crystallize the AgSO(3)CF(3) double helicate from CH(3)CN resulted in crystals of another dimeric complex, [Ag(2)1(SO(3)CF(3))(CH(3)CN)(2)](2)(SO(3)CF(3))(2)·H(2)O (3). The AgSO(3)CF(3) double helicate was successfully crystallized from a mixture of CH(3)CN and CH(3)NO(2) and had the structure [Ag(2)1(2)](SO(3)CF(3))(2)·3CH(3)NO(2) (4). The linear AgBF(4) complex could not be isolated from the double helicate in solution; however, crystals grown from a solution containing both the AgBF(4) double helicate and linear complexes in CH(3)CN had the structure [Ag(2)1(CH(3)CN)(2)](BF(4))(2) (5). The AgBF(4) double helicate could only be crystallized from CH(3)NO(2) and had the structure [Ag(2)1(2)](BF(4))(2)·2CH(3)NO(2) (6).  相似文献   

17.
A new family of dicopper(I) complexes [CuI2RL](X)2 (R=H, 1X, R=tBu, 2X and R=NO2, 3X, X=CF3SO3, ClO4, SbF6, or BArF, BArF=[B{3,5-(CF3)2C6H3}4]-), where RL is a Schiff-base ligand containing two tridentate binding sites linked by a xylyl spacer, has been prepared and characterized, and its reaction with O2 has been studied. The complexes were designed with the aim of reproducing structural aspects of the active site of type 3 dicopper proteins; they contain two three-coordinate copper sites and a rather flexible podand ligand backbone. The solid-state structures of 1ClO4, 2CF3SO3, 2ClO4, and 3BArF.CH3CN have been established by single-crystal X-ray diffraction analysis. 1ClO4 adopts a polymeric structure in the solid state while 2CF3SO3, 2ClO4, and 3BArF.CH3CN are monomeric. The complexes have been studied in solution by means of 1H and 19F NMR spectroscopy, which put forward the presence of dynamic processes. 1-3BArF and 1-3CF3SO3 in acetone react rapidly with O2 to generate metaestable [CuIII2(mu-O)2(RL)]2+ 1-3(O2) and [CuIII2(mu-O)2(CF3SO3)(RL)]+ 1-3(O2)(CF3SO3) species, respectively, that have been characterized by UV-vis spectroscopy and resonance Raman analysis. Instead, reaction of 1-3BArF with O2 in CH2Cl2 results in intermolecular O2 binding. DFT methods have been used to study the chemical identities and structural parameters of the O2 adducts, and the relative stability of the CuIII2(mu-O)2 form with respect to the CuII2(mu-eta2:eta2-O2) isomer. The reaction of 1X, X = CF3SO3 and BArF, with O2 in acetone has been studied by stopped-flow UV-vis exhibiting an unexpected very fast reaction rate (k=3.82(4)x10(3) M-1 s-1, DeltaH=4.9+/-0.5 kJ.mol-1, DeltaS=-148+/-5 J.K-1.mol-1), nearly 3 orders of magnitude faster than in the parent [CuI2(m-XYLMeAN)]2+. Thermal decomposition of 1-3(O2) does not result in aromatic hydroxylation. The mechanism and kinetics of O2 binding to 1X (X=CF3SO3 and BArF) are discussed and compared with those associated with selected examples of reported models of O2-processing copper proteins. A synergistic role of the copper ions in O2 binding and activation is clearly established from this analysis.  相似文献   

18.
Ayers AE  Dias HV 《Inorganic chemistry》2002,41(12):3259-3268
Syntheses of halide derivatives of germanium(II) and tin(II) aminotroponiminate (ATI) complexes and their silver salt metathesis reactions have been investigated. The treatment of GeCl(2) x (1,4-dioxane), SnCl(2), or SnI(2) with [(n-Pr)(2)ATI]Li in a 1:1 molar ratio affords the corresponding germanium(II) or tin(II) halide complex [(n-Pr)(2)ATI]MX (where [(n-Pr)(2)ATI](-) = N-(n-propyl)-2-(n-propylamino)troponiminate; M = Ge or Sn; X = Cl or I). As usually expected, [(n-Pr)(2)ATI]GeCl and [(n-Pr)(2)ATI]SnCl undergo rapid metathesis with CF(3)SO(3)Ag, leading to trifluoromethanesulfonate salts, [[(n-Pr)(2)ATI]Ge][SO(3)CF(3)] and [[(n-Pr)(2)ATI]Sn][SO(3)CF(3)], and silver chloride. However, when the silver source [HB(3,5-(CF(3))(2)Pz)(3)]Ag(eta(2)-toluene) is used, rather than undergoing metathesis, very stable 1:1 adducts [HB(3,5-(CF(3))(2)Pz)(3)]Ag<--Ge(Cl)[(n-Pr)(2)ATI] and [HB(3,5-(CF(3))(2)Pz)(3)]Ag<--Sn(Cl)[(n-Pr)(2)ATI] are formed (where [HB(3,5-(CF(3))(2)Pz)(3)](-) = hydrotris(3,5-bis(trifluoromethyl)pyrazolyl)borate). The use of the iodide derivative [(n-Pr)(2)ATI]SnI did not change the outcome either. All new compounds have been characterized by multinuclear NMR spectroscopy and X-ray crystallography. The Ag-Ge and Ag-Sn bond distances of [HB(3,5-(CF(3))(2)Pz)(3)]Ag<-- Ge(Cl)[(n-Pr)(2)ATI], [HB(3,5-(CF(3))(2)Pz)(3)]Ag<--Sn(Cl)[(n-Pr)(2)ATI], and [HB(3,5-(CF(3))(2)Pz)(3)]Ag<--Sn(I)[(n-Pr)(2)ATI] are 2.4142(6), 2.5863(6), and 2.5880(10) A, respectively. A convenient route to [(n-Pr)(2)ATI]H is also reported.  相似文献   

19.
Bu XH  Xie YB  Li JR  Zhang RH 《Inorganic chemistry》2003,42(23):7422-7430
In our efforts to systematically investigate the effects of the linker units of flexible ligands and other factors on the structures of Ag(I) complexes with thioethers, five new flexible pyridyl thioether ligands, bis(2-pyridylthio)methane (L(1)()), 1,3-bis(2-pyridylthio)propane (L(3)()), 1,4-bis(2-pyridylthio)butane (L(4)), 1,5-bis(2-pyridylthio)pentane (L(5)), and 1,6-bis(2-pyridylthio)hexane (L(6)), have been designed and synthesized, and the reactions of these ligands with Ag(I) salts under varied conditions (varying the solvents and counteranions) lead to the formation of eight novel metal-organic coordination architectures from di- and trinuclear species to two-dimensional networks: [Ag(3)(L(1)())(2)(ClO(4))(2)](ClO(4)) (1), [[AgL(3)](ClO(4))]( infinity ) (2), [[Ag(2)(L(4))(2)](ClO(4))(2)(CHCl(3))]( infinity ) (3), [[AgL(4)](ClO(4))(C(3)H(6)O)]( infinity ) (4), [[Ag(2)L(4)](NO(3))(2)]( infinity ) (5), [Ag(2)L(4)()(CF(3)SO(3))(2)]( infinity ) (6), [[AgL(5)](ClO(4))(CHCl(3))](2) (7), and [[AgL(6)()](ClO(4))]( infinity ) (8). All the structures were established by single-crystal X-ray diffraction analysis. The coordination modes of these ligands were found to vary from N,N-bidentate to N,N,S-tridentate to N,N,S,S-tetradentate modes, while the Ag(I) centers adopt two-, three-, or four-coordination geometries with different coordination environments. The structural differences of 1, 2, 3, 7, and 8 indicate that the subtle variations on the spacer units can greatly affect the coordination modes of the terminal pyridylsulfanyl groups and the coordination geometries of Ag(I) ions. The structural differences of 3 and 4 indicate that solvents also have great influence on the structures of Ag(I) complexes, and the differences between 3, 5, and 6 show counteranion effects in polymerization of Ag(I) complexes. The influences of counterions and solvents on the frameworks of these complexes are probably based upon the flexibility of ligands and the wide coordination geometries of Ag(I) ions. The results of this study indicate that the frameworks of the Ag(I) complexes with pyridyl dithioethers could be adjusted by ligand modifications and variations of the complex formation conditions.  相似文献   

20.
Lee JW  Kim EA  Kim YJ  Lee YA  Pak Y  Jung OS 《Inorganic chemistry》2005,44(9):3151-3155
Studies of the anion effects on the molecular construction of a series of AgX complexes with bis(4-pyridyl)dimethylsilane (L) (X- = NO2-, NO3-, CF3SO3-, and PF6-) have been carried out. Formation of the skeletal bonds appears to be primarily associated with a suitable combination of bidentate N-donors of L and a variety of coordination geometries of Ag(I) ions. The L:Ag(I) ratios of the products are dependent on the nature of the polyatomic anions. The 1:1 adduct Ag(I)-L for NO2-, 3:4 adduct for NO3-, 2:3 adduct for CF3SO3-, and 1:2 adduct for PF6- have been obtained. A linear relationship between the ratio of ligand to metal and the coordinating ability of anions was observed. [Ag(NO2)(L)] has a unique sheet structure consisting of double helices, and [Ag3(L)4](NO3)3 is a 2 nm thick interwoven sheet structure consisting of nanotubes. The compound [Ag2(L)3](CF3SO3)2 affords a characteristic ladder-type channel structure, and [Ag(L)2](PF6) is a simple 2D grid structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号