首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method (Martynyuk and Pivovarchik, Inverse Probl. 26(3):035011, 2010) of recovering the potential of the Sturm–Liouville equation on a half of the interval by the spectrum of a boundary value problem and by the restriction of the potential onto the other half of the interval is used for treating the missing eigenvalue problem (Trans. Am. Math. Soc. 352:2765–3789, 2000, J. R. Astr. Soc. 62:41–48, 1980, J. Math. Pures Appl. 91:468–475, 2009, J. Math. Soc. Japan 38:39–65, 1986). The latter arises in the case of the half-inverse (Hochstadt–Lieberman) problem with Robin boundary conditions and lies in the fact that in many cases all the eigenvalues but one are needed to recover the potential and the Robin condition at one of the ends.  相似文献   

2.
The main goal of this note is to give a counterexample to the Triality Theorem in Gao and Ruan (Math Methods Oper Res 67:479–491, 2008). This is done first by considering a more general optimization problem with the aim to encompass several examples from Gao and Ruan (Math Methods Oper Res 67:479–491, 2008) and other papers by Gao and his collaborators (see f.i. Gao Duality principles in nonconvex systems. Theory, methods and applications. Kluwer, Dordrecht, 2000; Gao and Sherali Advances in applied mathematics and global optimization. Springer, Berlin, 2009). We perform a thorough analysis of the general optimization problem in terms of local extrema while presenting several counterexamples.  相似文献   

3.
We establish a new theorem of existence (and uniqueness) of solutions to the Navier-Stokes initial boundary value problem in exterior domains. No requirement is made on the convergence at infinity of the kinetic field and of the pressure field. These solutions are called non-decaying solutions. The first results on this topic dates back about 40 years ago see the references (Galdi and Rionero in Ann. Mat. Pures Appl. 108:361–366, 1976, Arch. Ration. Mech. Anal. 62:295–301, 1976, Arch. Ration. Mech. Anal. 69:37–52, 1979, Pac. J. Math. 104:77–83, 1980; Knightly in SIAM J. Math. Anal. 3:506–511, 1972). In the articles Galdi and Rionero (Ann. Mat. Pures Appl. 108:361–366, 1976, Arch. Ration. Mech. Anal. 62:295–301, 1976, Arch. Ration. Mech. Anal. 69:37–52, 1979, Pac. J. Math. 104:77–83, 1980) it was introduced the so called weight function method to study the uniqueness of solutions. More recently, the problem has been considered again by several authors (see Galdi et al. in J. Math. Fluid Mech. 14:633–652, 2012, Quad. Mat. 4:27–68, 1999, Nonlinear Anal. 47:4151–4156, 2001; Kato in Arch. Ration. Mech. Anal. 169:159–175, 2003; Kukavica and Vicol in J. Dyn. Differ. Equ. 20:719–732, 2008; Maremonti in Mat. Ves. 61:81–91, 2009, Appl. Anal. 90:125–139, 2011).  相似文献   

4.
In this paper, we prove a local in time unique existence theorem for the free boundary problem of a compressible barotropic viscous fluid flow without surface tension in the \(L_p\) in time and \(L_q\) in space framework with \(2 < p < \infty \) and \(N < q < \infty \) under the assumption that the initial domain is a uniform \(W^{2-1/q}_q\) one in \({\mathbb {R}}^{N}\, (N \ge 2\) ). After transforming a unknown time dependent domain to the initial domain by the Lagrangian transformation, we solve problem by the Banach contraction mapping principle based on the maximal \(L_p\) \(L_q\) regularity of the generalized Stokes operator for the compressible viscous fluid flow with free boundary condition. The key issue for the linear theorem is the existence of \({\mathcal {R}}\) -bounded solution operator in a sector, which combined with Weis’s operator valued Fourier multiplier theorem implies the generation of analytic semigroup and the maximal \(L_p\) \(L_q\) regularity theorem. The nonlinear problem we studied here was already investigated by several authors (Denisova and Solonnikov, St. Petersburg Math J 14:1–22, 2003; J Math Sci 115:2753–2765, 2003; Secchi, Commun PDE 1:185–204, 1990; Math Method Appl Sci 13:391–404, 1990; Secchi and Valli, J Reine Angew Math 341:1–31, 1983; Solonnikov and Tani, Constantin carathéodory: an international tribute, vols 1, 2, pp 1270–1303, World Scientific Publishing, Teaneck, 1991; Lecture notes in mathematics, vol 1530, Springer, Berlin, 1992; Tani, J Math Kyoto Univ 21:839–859, 1981; Zajaczkowski, SIAM J Math Anal 25:1–84, 1994) in the \(L_2\) framework and Hölder spaces, but our approach is different from them.  相似文献   

5.
We show that a problem asked by Yau (Open problems in geometry. Chern–a great geometer of the twentieth century, pp. 275–319, 1992) cannot be true in general. The counterexamples are constructed based on the recent work of Wu and Zheng (Examples of positively curved complete Kähler manifolds. Geometry and Analysis, vol. 17, pp. 517–542, 2010).  相似文献   

6.
In this paper, we construct a weak solution to the unipolar quantum drift-diffusion model in a bounded domain with Neumann boundary conditions, thereby extending an existence result in Gianazza et al. (Arch Rational Mech Anal 194:133–220, 2009) to the case where the boundary of the domain is only Lipschitz. We also obtain the limit of the solution as the scaled Planck constant \(\varepsilon \) in the problem goes to \(0\) .  相似文献   

7.
The structure of the set of positive solutions of the semilinear elliptic boundary value problem depends on a certain non-degeneracy condition, which was proved by K.J. Brown [2] and T. Ouyang and J. Shi [12], with a shorter proof given later by P. Korman [8]. In this note we present a more general result, communicated to us by L. Nirenberg [13]. We also discuss the extensions in cases when the domain D is in R 2, and it is either symmetric or convex.  相似文献   

8.
The structure of the set of positive solutions of the semilinear elliptic boundary value problem $\Delta u(x)+\lambda f(u(x))=0\ \ \ {\rm for}\ x\in D,\ \ \ u=0\ \ {\rm on}\ \partial D$ depends on a certain non-degeneracy condition, which was proved by K.J. Brown [1] and T. Ouyang and J. Shi [5]. We provide a short alternative proof of that condition.  相似文献   

9.
The problem presented below is a singular-limit problem of the extension of the Cahn-Hilliard model obtained via introducing the asymmetry of the surface tension tensor under one of the truncations (approximations) of the inner energy [2, 58, 10, 12, 13].  相似文献   

10.
In 1993, Bartnik (J. Differ. Geom. 37(1):37–71) introduced a quasi-spherical construction of metrics of prescribed scalar curvature on 3-manifolds. Under quasi-spherical ansatz, the problem is converted into the initial value problem for a semi-linear parabolic equation of the lapse function. The original ansatz of Bartnik started with a background foliation with round metrics on the 2-sphere leaves. This has been generalized by several authors (Shi and Tam in J. Differ. Geom. 62(1):79–125, 2002; Smith in Gen. Relat. Gravit. 41(5):1013–1024, 2009; Smith and Weinstein in Commun. Anal. Geom. 12(3):511–551, 2004) under various assumptions on the background foliation. In this article, we consider background foliations given by conformal round metrics, and by the Ricci flow on 2-spheres. We discuss conditions on the scalar curvature function and on the foliation that guarantee the solvability of the parabolic equation, and thus the existence of asymptotically flat 3-metrics with a prescribed inner boundary. In particular, many examples of asymptotically flat-scalar flat 3-metrics with outermost minimal surfaces are obtained.  相似文献   

11.
In this note we study the Navier–Stokes initial boundary value problem in exterior domains. We assume that the initial data has just finite Dirichlet norm. We call the solution \(D\) -solution. It is well known that the analogous steady problem is solved in Galdi (An Introduction to the Mathematical Theory of the Navier–Stokes Equations II. Springer, Berlin, 1994), as well as the existence of time periodic solutions in Maremonti et al. (J Math Sci 93(5):719–746, 1999, Zap. Nauchn. Semin. POMI 233:142–182, 1996). So it is natural to inquire about the case of the nonstationary problem.  相似文献   

12.
In this paper we prove existence and multiplicity of positive and sign-changing solutions to the pure critical exponent problem for the $p$ -Laplacian operator with Dirichlet boundary conditions on a bounded domain having nontrivial topology and discrete symmetry. Pioneering works related to the case $p=2$ are Brezis and Nirenberg (Comm Pure Appl Math 36, 437–477, 1983), Coron (C R Acad Sci Paris Sr I Math 299, 209–212, 1984), and Bahri and Coron (Comm. Pure Appl. Math. 41, 253–294, 1988). A global compactness analysis is given for the Palais-Smale sequences in the presence of symmetries.  相似文献   

13.
Based on the very recent work by Dang and Gao (Invers Probl 27:1–9, 2011) and Wang and Xu (J Inequal Appl, doi:10.1155/2010/102085, 2010), and inspired by Yao (Appl Math Comput 186:1551–1558, 2007), Noor (J Math Anal Appl 251:217–229, 2000), and Xu (Invers Probl 22:2021–2034, 2006), we suggest a three-step KM-CQ-like method for solving the split common fixed-point problems in Hilbert spaces. Our results improve and develop previously discussed feasibility problem and related algorithms.  相似文献   

14.
An important role in studying the classical Cahn–Hilliard problem [5] is played by its singular-limit problem, the so-called Melin–Sikerk free boundary problem, which, at present allows one to only numerically describe the instability of the crystallization process. The purpose of this work is to prepare the material for deducing the singular-limit problem for the essentially asymmetric model [8, 21].  相似文献   

15.
We consider classes of ideals which generalize the mixed product ideals introduced by Restuccia and Villarreal (see [5]), and also generalize the expansion construction by Bayati and Herzog [1]. We compute the minimal graded free resolution of generalized mixed product ideals and show that the regularity of a generalized mixed product ideal coincides with the regularity of the monomial ideal by which it is induced.  相似文献   

16.
This paper studies conditions for local (in time) solvability of a qualitatively new singularllimit problem, the free (unknown) boundary problem appearing recently. In fact, there are not so many different free boundary problems, which corresponds to not so large a variety of principally different phase transitions of the first and second kinds. Therefore, the appearance of principally new problems elicits interest. This paper studies structural features of a certain problem on the basis of a certain method developed previously, precisely, the localization method [1, 3, 9].  相似文献   

17.
In this paper we extend some recent results on the stability of the Johnson–Nédelec coupling of finite and boundary element methods in the case of boundary value problems. In Of and Steinbach (Z Angew Math Mech 93:476–484, 2013), Sayas (SIAM J Numer Anal 47:3451–3463, 2009) and Steinbach (SIAM J Numer Anal 49:1521–1531, 2011), the case of a free-space transmission problem was considered, and sufficient and necessary conditions are stated which ensure the ellipticity of the bilinear form for the coupled problem. The proof was based on considering the energies which are related to both the interior and exterior problem. In the case of boundary value problems for either interior or exterior problems, additional estimates are required to bound the energy for the solutions of related subproblems. Moreover, several techniques for the stabilization of the coupled formulations are analysed. Applications involve boundary value problems with either hard or soft inclusions, exterior boundary value problems, and macro-element techniques.  相似文献   

18.
We provide a new proof of the classical result that any closed rectifiable Jordan curve ${\Gamma \subset \mathbb{R}^3}$ being piecewise of class C 2 bounds at least one immersed minimal surface of disc-type, under the additional assumption that the total curvature of Γ is smaller than 6π. In contrast to the methods due to Osserman (Ann Math 91(2):550–569, 1970), Gulliver (Ann Math 97(2):275–305, 1973) and Alt (Math Z 127:333–362, 1972, Math Ann 201:33–35, 1973), our proof relies on a polygonal approximation technique, using the existence of immersed solutions of Plateau’s problem for polygonal boundary curves, provided by the first author’s accomplishment (The Plateau problem, Fuchsian equations and the Riemann–Hilbert problem. Mémoires de la Soc. Math. Fr. (to appear) arXiv: 1003.0978) of Garnier’s ideas in (Annales scientifiques de l’É.N.S. 45:53–144, 1928).  相似文献   

19.
An augmented Lagrangian approach for sparse principal component analysis   总被引:1,自引:0,他引:1  
Principal component analysis (PCA) is a widely used technique for data analysis and dimension reduction with numerous applications in science and engineering. However, the standard PCA suffers from the fact that the principal components (PCs) are usually linear combinations of all the original variables, and it is thus often difficult to interpret the PCs. To alleviate this drawback, various sparse PCA approaches were proposed in the literature (Cadima and Jolliffe in J Appl Stat 22:203–214, 1995; d’Aspremont et?al. in J Mach Learn Res 9:1269–1294, 2008; d’Aspremont et?al. SIAM Rev 49:434–448, 2007; Jolliffe in J Appl Stat 22:29–35, 1995; Journée et?al. in J Mach Learn Res 11:517–553, 2010; Jolliffe et?al. in J Comput Graph Stat 12:531–547, 2003; Moghaddam et?al. in Advances in neural information processing systems 18:915–922, MIT Press, Cambridge, 2006; Shen and Huang in J Multivar Anal 99(6):1015–1034, 2008; Zou et?al. in J Comput Graph Stat 15(2):265–286, 2006). Despite success in achieving sparsity, some important properties enjoyed by the standard PCA are lost in these methods such as uncorrelation of PCs and orthogonality of loading vectors. Also, the total explained variance that they attempt to maximize can be too optimistic. In this paper we propose a new formulation for sparse PCA, aiming at finding sparse and nearly uncorrelated PCs with orthogonal loading vectors while explaining as much of the total variance as possible. We also develop a novel augmented Lagrangian method for solving a class of nonsmooth constrained optimization problems, which is well suited for our formulation of sparse PCA. We show that it converges to a feasible point, and moreover under some regularity assumptions, it converges to a stationary point. Additionally, we propose two nonmonotone gradient methods for solving the augmented Lagrangian subproblems, and establish their global and local convergence. Finally, we compare our sparse PCA approach with several existing methods on synthetic (Zou et?al. in J Comput Graph Stat 15(2):265–286, 2006), Pitprops (Jeffers in Appl Stat 16:225–236, 1967), and gene expression data (Chin et?al in Cancer Cell 10:529C–541C, 2006), respectively. The computational results demonstrate that the sparse PCs produced by our approach substantially outperform those by other methods in terms of total explained variance, correlation of PCs, and orthogonality of loading vectors. Moreover, the experiments on random data show that our method is capable of solving large-scale problems within a reasonable amount of time.  相似文献   

20.
In a classic Markov decision problem of Derman et al. (Oper. Res. 23(6):1120–1130, 1975) an investor has an initial capital x from which to make investments, the opportunities for which occur randomly over time. An investment of size y results in profit P(y), and the aim is maximize the sum of the profits obtained within a given time t. The problem is similar to a groundwater management problem of Burt (Manag. Sci. 11(1):80–93, 1964), the notorious bomber problem of Klinger and Brown (Stochastic Optimization and Control, pp. 173–209, 1968), and types of fighter problems addressed by Weber (Stochastic Dynamic Optimization and Applications in Scheduling and Related Fields, p. 148, 1985), Shepp et al. (Adv. Appl. Probab. 23:624–641, 1991) and Bartroff et al. (Adv. Appl. Probab. 42(3):795–815, 2010a). In all these problems, one is allocating successive portions of a limited resource, optimally allocating y(x,t), as a function of remaining resource x and remaining time t. For their investment problem, Derman et al. (Oper. Res. 23(6):1120–1130, 1975) proved that an optimal policy has three monotonicity properties: (A) y(x,t) is nonincreasing in t, (B) y(x,t) is nondecreasing in x, and (C) x?y(x,t) is nondecreasing in x. Theirs is the only problem of its type for which all three properties are known to be true. In the bomber problem the status of (B) is unresolved. For the general fighter problem the status of (A) is unresolved. We survey what is known about these exceedingly difficult problems. We show that (A) and (C) remain true in the bomber problem, but that (B) is false if we very slightly relax the assumptions of the usual model. We give other new results, counterexamples and conjectures for these problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号