首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 258 毫秒
1.
The local temperature has been determined for a viscous liquid flowing through a paraboloidal tube. Wall temperature and inlet temperature have been considered constant. The liquid flow was considered as creeping flow and its velocity distribution was determined by solving the biharmonic differential equation of the stream function. The local temperature was evaluated numerically from the analytical results.
Wärmetransport im Paraboloidrohr
Zusammenfassung Es wird die lokale Temperatur in einer viskosen Strömung durch ein Paraboloidrohr bestimmt. Dabei wird konstante Wand- und Einlauftemperatur angenommen. Die kriechende Strömungsgeschwindigkeit wurde aus der Lösung der biharmonischen Differentialgleichung der Stromfunktion bestimmt. Die lokale Temperatur wurde aus den analytischen Ergebnissen für einige Paraboloidrohre numerisch bestimmt.

Nomenclature 1 F 1 confluent hypergeometric function - diffusivity - T(, , ) temperature - T w temperature at the paraboloidal wall - T i temperature at the inlet - u(, ) flow velocity of viscous liquid in -direction - volumetric flow - eigenvalues of confluent hypergeometric function - streamfunction - o wall of paraboloidal tube - o inlet of paraboloidal tube - , , paraboloidal coordinates  相似文献   

2.
The local concentration has been determined for a viscous liquid flowing through a converging-diverging tube with constant wall- and initial concentration. The liquid flow was considered as creeping flow and its velocity distribution was determined by solving the biharmonic differential equation of the stream function. The mass transport was presented in form of an infinite series of Legendre functions, which rendered with the Galerkin condition a determinant of finite order for the determination of the eigenvalues. The local concentration was evaluated numerically for differently diverging tubes, of which the case of mass transport for viscous (linearized) flow through an orifice of circular cross-section presented a special case.
Stofftransport in einem konvergierenden-divergierenden Rohr
Znsammenfassung Es wird die lokale Konzentration eines in einer viskosen Strömung durch ein Venturirohr befindlichen Stoffes bei konstanter Wand-und Einlaßkonzentration bestimmt. Die viskose (kriechende) Strömungsgeschwindigkeit wurde aus der Lösung der biharmonischen Differentialgleichung der Stromfunktion bestimmt. Die Bestimmung des Massentransportes im Rohr wird mit einer Lösung in Form einer unendlichen Reihe von Legendrefunktionen bewältigt, wobei die Eigenwertgleichung eine Determinante unendlicher Ordnung ergibt. Die lokale Konzentration wurde für verschieden divergierende Rohre numerisch ausgewertet, wobei der Massentransport bei Strömung durch eine kreisförmige Öffnung als Sonderfall auftrat.

Nomenclature a radius of throat area - c (, ) concentration - c w wall concentration - c i initial concentration - D diffusion coefficient - P n 0 Legendre function - u (, ) flow velocity of liquid (in-direction) - flow volume per time unit - n roots ofP 0 ( 0)=0 - stream function - , , oblate spheroidal coordinates - 0 wall of the nozzle  相似文献   

3.
Zusammenfassung Zur Berechnung turbulenter Strömungen wird das k--Modell im Ansatz für die turbulente Scheinzähigkeit erweitert, so daß es den Querkrümmungs- und Dichteeinfluß auf den turbulenten Transportaustausch erfaßt. Die dabei zu bestimmenden Konstanten werden derart festgelegt, daß die bestmögliche Übereinstimmung zwischen Berechnung und Messung erzielt wird. Die numerische Integration der Grenzschichtgleichungen erfolgt unter Verwendung einer Transformation mit dem Differenzenverfahren vom Hermiteschen Typ. Das erweiterte Modell wird auf rotationssymmetrische Freistrahlen veränderlicher Dichte angewendet und zeigt Übereinstimmung zwischen Rechnung und Experiment.
On the influence of transvers-curvature and density in inhomogeneous turbulent free jets
The prediction of turbulent flows based on the k- model is extended to include the influence of transverse-curvature and density on the turbulent transport mechanisms. The empirical constants involved are adjusted such that the best agreement between predictions and experimental results is obtained. Using a transformation the boundary layer equations are solved numerically by means of a finite difference method of Hermitian type. The extended model is applied to predict the axisymmetric jet with variable density. The results of the calculations are in agreement with measurements.

Bezeichnungen Wirbelabsorptionskoeffizient - ci Massenkonzentration der Komponente i - cD, cL, c, c1, c2 Konstanten des Turbulenzmodells - d Düsendurchmesser - E bezogene Dissipationsrate - f bezogene Stromfunktion - f Korrekturfunktion für die turbulente Scheinzähigkeit - j turbulenter Diffusionsstrom - k Turbulenzenergie - ki Schrittweite in -Richtung - K dimensionslose Turbulenzenergie - L turbulentes Längenmaß - Mi Molmasse der Komponente i - p Druck - allgemeine Gaskonstante - r Querkoordinate - r0,5 Halbwertsbreite der Geschwindigkeit - r0,5c Halbwertsbreite der Konzentration - T Temperatur - u Geschwindigkeitskomponente in x-Richtung - v Geschwindigkeitskomponente in r-Richtung - x Längskoordinate - y allgemeine Funktion - Yi diskreter Wert der Funktion y - Relaxationsfaktor für Iteration - turbulente Dissipationsrate - transformierte r-Koordinate - kinematische Zähigkeit - Exponent - transformierte x-Koordinate - Dichte - k, Konstanten des Turbulenzmodells - Schubspannung - allgemeine Variable - Stromfunktion - Turbulente Transportgröße Indizes 0 Strahlanfang - m auf der Achse - r mit Berücksichtigung der Krümmung - t turbulent - mit Berücksichtigung der Dichte - im Unendlichen - Schwankungswert oder Ableitung einer Funktion - – Mittelwert Herrn Professor Dr.-Ing. R. Günther zum 70. Geburtstag gewidmet  相似文献   

4.
Suddenly started laminar flow in the entrance region of a circular tube, with constant inlet velocity, is investigated analytically by using integral momentum approach. A closed form solution to the integral momentum equation is obtained by the method of characteristics to determine boundary layer thickness, entrance length, velocity profile, and pressure gradient.Nomenclature M(, , ) a function - N(, , ) a function - p pressure - p* p/1/2U 2, dimensionless pressure - Q(, , ) a function - R radius of the tube - r radial distance - Re 2RU/, Reynolds number - t time - U inlet velocity, constant for all time, uniform over the cross section - u velocity in the boundary layer - u* u/U, dimensionless velocity - u 1 velocity in the inviscid core - x axial distance - y distance perpendicular to the axis of the tube - y* y/R, dimensionless distance perpendicular to the axis - boundary layer thickness - * displacement thickness - /R, dimensionless boundary layer thickness - momentum thickness - absolute viscosity of the fluid - /, kinematic viscosity of the fluid - x/(R Re), dimensionless axial distance - density of the fluid - tU/(R Re), dimensionless time - w wall shear stress  相似文献   

5.
The transient temperatures resulting from a periodically varying surface heat flux boundary condition have numerous applications. In this work, explicit, analytic solutions are presented for the transient surface and medium temperatures due to periodically varying step changes in surface heat flux for geometries such as a slab, cylinder, and sphere. The nonlinear case allowing for the added effects of radiation from the surface into an external ambient are studied numerically.
Temperaturschwankungen aus periodischen Änderungen des Wärmeflusses an der Oberfläche von Platten, Zylindern und Kugeln
Zusammenfassung Temperaturschwankungen herrührend von periodischen Änderungen des Wärmeflusses an der Oberfläche und der Grenzschichtbedingungen haben zahlreiche Anwendungen. In dieser Arbeit wird eine explizite analytische Lösung für die transienten Temperaturen an der Oberfläche und in der Mitte von Platten, Zylindern und Kugeln angegeben, die durch periodische stufenweise Änderungen des Wärmeflusses an der Oberfläche entstehen. Der nichtlineare Fall mit zusätzlichem Einfluß der Wärmestrahlung in die Umgebung wurde numerisch studiert.

Nomenclature f 0 reference heat flux - f() dimensionless applied surface heat flux=q(t)/f0 - F i dimensionless stepchange in surface heat flux for linear problem - J i (z) Bessel function - k thermal conductivity - L half thickness of slab, half radius of cylinder and sphere - N conduction-to-radiation parameter= - P period of on-off surface heat flux - q (t) applied surface heat flux - t time - T(x, t) temperature - T r reference temperature=(f 0/)1/4 - U(z) unit step function - x physical distance Greek symbols thermal diffusivity - m eigenvalues - 0 surface emissivity - dimensionless spacial distance=x/2L - (, ) dimensionless temperature=T/T r - 0 0 dimensionless initial temperature - i dimensionless times at which step changes in surface heat flux occur - dimensionless time=t/2 L2 - Stefan-Boltzmann constant - fraction of periodP during which the surface heat flux is non-zero - (, ) dimensionless temperature  相似文献   

6.
Zusammenfassung Der Wärmeleitwiderstand eines Kondensattropfens wird durch die Tropfengeometrie und das Zusammenspiel zwischen dem Transport des kondensierenden Dampfes und der Wärmeleitung im Inneren des Tropfens bestimmt. Für einen liegenden Tropfen auf horizontaler Unterlage wird die Form des Meridians aus dem Gleichgewicht zwischen Schwerkraft und Oberflächenkraft berechnet. An der freien Oberfläche des Tropfens werden die Abweichungen vom thermodynamischen Gleichgewicht durch die Wärmeübergangszahl p des Phasenwechsels berücksichtigt. Dadurch vermeidet man das Auftreten einer physikalisch sinnlosen Singularität an der Basisfläche des Tropfens. An der Wand wird konstante Temperatur angenommen und das resultierende Wärmeleitungsproblem für verschiedene Kombinationen der maßgebenden Kennzahlen durch ein Differenzenverfahren gelöst. Die Ergebnisse gelten für abgeplattete Tropfen mit beliebigen Randwinkeln und gehen somit über die Lösung von Umur und Griffith [1] für den Halbkugeltropfen hinaus.
The thermal resistance of a drop of condensate
The resistance of heat conduction in a drop of condensate is governed by the geometry of the drop and the interaction between mass transport of condensating vapour and heat conduction in the interior of the drop. We calculate the shape of the meridian of a drop lying on a horizontal plane from the equilibrium of gravity with surface force. The deviation of thermodynamic equilibrium at the free surface of the drop is considered by the introduction of the heat transfer coefficient of phase change. Thus we avoid a physically absurd singularity at the basis of the drop. Constant wall temperature will be suggested. The resulting problem of heat conduction is solved for a set of different combinations of the controlling dimensionless coefficients by means of a finite difference method. The results are valid for flat drops of arbitrary contact angles and thus supersede the solution of Umur and Griffith [1] for the hemispherical drop.

Bezeichnungen a Laplace-Kennzahl - f () Faktor nach Fatica und Katz, Gl. (2) - g Fallbeschleunigung - m Massenstromdichte des kondensierenden Dampfes - n innere Normale der Tropfenoberfläche - p Druck - r radiale Koordinate - r Radius eines stabilen Tropfenkeims - t Temperatur an einem Punkt im Inneren des Tropfens - tD Dampftemperatur - tF Temperatur an der Phasengrenze - tW Wandtemperatur - t treibende Temperaturdifferenz für die Kondensation - u dimensionslose Temperatur - z vertikale Koordinate - D Durchmesser der Tropfenbasis - H Verdampfungsenthalpie - Pm m-tes Legendre-Polynom 1. Art - Q Wärmestrom durch einen Tropfen - R Radius eines Tropfens mit der Form einer Kugelkappe Gaskonstante des Dampfes - R1, R2 Hauptkrümmungsradien an einem Punkt der Tropfenoberfläche - R0 Krümmungsradius im Tropfenscheitel - T Temperatur des Dampfes - W Wärmeleitwiderstand eines Kondensattropfens - a Wärmeübergangszahl nach Fatica und Katz - ap Wärmeübergangszahl des Phasenwechsels - dimensionslose vertikale Koordinate - Randwinkel - Wärmeleitfähigkeit des Kondensates - dimensionslose radiale Koordinate - 0 dimensionsloser Radius der Tropfenbasis - Dichte des Kondensates - Oberflächenspannung, Kondensationskoeffizient - Kontingenzwinkel - dimensionslose innere Normale der Tropfenoberfläche  相似文献   

7.
Summary TheCross equation describes the flow of pseudoplastic liquids in terms of an upper and a lower Newtonian viscosity corresponding to infinite and zero shear, and 0, and of a third material constant related to the mechanism of rupture of linkages between particles in the intermediate, non-Newtonian flow regime, Calculation of of bulk polymers is important, since it cannot be determined experimentally. The equation was applied to the melt flow data of two low density polyethylenes at three temperatures.Using data in the non-Newtonian region covering 3 decades of shear rate to extrapolate to the zero-shear viscosity resulted in errors amounting to about onethird of the measured 0 values. The extrapolated upper Newtonian viscosity was found to be independent of temperature within the precision of the data, indicating that it has a small activation energy.The 0 values were from 100 to 1,400 times larger than the values at the corresponding temperatures.The values of were large compared to the values found for colloidal dispersions and polymer solutions, but decreased with increasing temperature. This shows that shear is the main factor in reducing chain entanglements, but that the contribution of Brownian motion becomes greater at higher temperatures.
Zusammenfassung Die Gleichung vonCross beschreibt das Fließverhalten von pseudoplastischen Flüssigkeiten durch drei Konstante: Die obereNewtonsche Viskosität (bei sehr hohen Schergeschwindigkeiten), die untereNewtonsche Viskosität 0 (bei Scherspannung Null), und eine Materialkonstante, die vom Brechen der Bindungen zwischen Partikeln im nicht-Newtonschen Fließbereich abhängt. Die Berechnung von ist wichtig für unverdünnte Polymere, wo man sie nicht messen kann.Die Gleichung wurde auf das Fließverhalten der Schmelzen von zwei handelsüblichen Hochdruckpolyäthylenen bei drei Temperaturen angewandt. Die Werte von 0, durch Extrapolation von gemessenen scheinbaren Viskositäten im Schergeschwindigkeitsbereich von 10 bis 4000 sec–1 errechnet, wichen bis 30% von den gemessenen 0-Werten ab. Die Aktivierungsenergie der war so klein, daß die-Werte bei den drei Temperaturen innerhalb der Genauigkeit der Extrapolation anscheinend gleich waren. Die 0-Werte waren 100 bis 1400 mal größer als die-Werte.Im Verhältnis zu kolloidalen Dispersionen und verdünnten Polymerlösungen war das der Schmelzen groß, nahm aber mit steigender Temperatur ab. Deshalb wird die Verhakung der Molekülketten hauptsächlich durch Scherbeanspruchung vermindert, aber der Beitrag derBrownschen Bewegung nimmt mit steigender Temperatur zu.
  相似文献   

8.
Zusammenfassung Es wird eine analytische Lösung für die Absorption in einem laminaren Rieselfilm mit homogener und heterogener chemischer Reaktion 1. Ordnung vorgestellt, wobei der Stofftransportwiderstand auf der Gasseite liegt. Die Lösung ist eine Funktion von drei dimensionslosen ParameternBi, und, welche die BiotZahl und einen homogenen bzw. heterogenen Reaktionsparameter darstellen. Es wird gezeigt, daß für feste Werte vonBi und die Absorptionsrate (bezogen auf die Breite 1 des Rieselfilms) über eine gewisse Länge (dimensionslos) des Rieselfilms unabhängig von ist, wenn, < 0,6 ist. Die laufende Länge wird von der Stelle aus gemessen, an der die Absorption beginnt. Für b 0,6 nimmt der FlußQ mit zu, erreicht aber einen Sättigungswert bei=10, wonachQ nurmehr sehr langsam anwächst. Jedoch für ein gegebenes und ohne Übergangswiderstand im Film (Bi ) nimmtQ mit für alle 0 zu.
Mass transfer with chemical reaction in a laminar falling film
An analytical solution is presented for gas absorption in a laminar falling film with first-order homogeneous and heterogeneous chemical reaction and external gas-phase mass transfer resistance. The solution depends on three dimensionless parametersBi, and, wich represent the Biot number, homogeneous and heterogeneous reaction parameters, respectively. It is shown that for fixed values ofBi and, the rate of gas absorption (per unit breadth) over a certain length; (dimensionless) along the falling film measured from the point where surface absorption begins is independent of if < 0.6. For 0.6, this fluxQ increases with but reaches a saturation value at=10 beyond whichQ increases very slowly. But for given and zero gas film resistance (Bi ),Q increases with for all 0.
  相似文献   

9.
The possibility of simplifying the formulas obtained by the Maxwell-Loyalka method for the velocity u, temperature T and diffusion d slip coefficients and the temperature jump coefficient in a binary gas mixture with frozen internal degrees of freedom of the molecules is considered. Special attention is paid to gases not having sharply different physicochemical properties. The formulas are written in a form convenient for use without linearization in the thermal diffusion coefficient. They are systematically analyzed for mixtures of inert gases, N2, O2, CO2, and H2 at temperatures extending from room temperature to 2500°K. It is shown that for the molecular weight ratios m* = m2/m1 considered the expressions for u and can be radically simplified. With an error acceptable for practical purposes (up to 10%) it is possible to employ expressions of the same structural form as for a single-component gas: for u if 1 m* 6, and for if 1 m* 3. When 1 m* 2 the expression for T can be simplified with a maximum error of 5%. Within the limits of accuracy of the method the expression for t can be linearized in the thermal diffusion coefficient. An approximate expression convenient for practical calculations is proposed for d Finally, the , u, and T for a single-component polyatomic gas with easy excitation of the internal degrees of freedom of the molecules are similarly analyzed; it is shown that these expressions can be considerably simplified.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 152–159, November–December, 1990.  相似文献   

10.
We consider a surface S = (), where 2 is a bounded, connected, open set with a smooth boundary and : 3 is a smooth map; let () denote the components of the two-dimensional linearized strain tensor of S and let 0 with length 0 > 0. We assume the the norm ,|| ()||0, in the space V0() = { H1() × H1() × L2(); = 0 on 0 } is equivalent to the usual product norm on this space. We then establish that this assumption implies that the surface S is uniformly elliptic and that we necessarily have 0 = .  相似文献   

11.
Zusammenfassung Der lokale Stoffübergang wurde in Abhängigkeit von der Meßlänge, dem Startort und der Zulaufhöhe gemessen. Der Gültigkeitsbereich der Theorie von Nusselt wird ermittelt. Die Reynolds-Zahl nahm Werte zwischen 3,86 und 2496 an. Die örtlich wirkende Hydrodynamik ist entscheidend für das Anwachsen der örtlichen Sherwood-Zahl. Die Genauigkeit aller Versuchsergebnisse kann auf ± 5% abgeschätzt werden.
Investigation of the local mass transfer of a laminar and turbulent falling liquid film
The local mass transfer was measured as a function of the measuring length, the starting point and the liquid height above the ring-slot. The range of the Reynolds number was 3,86 Re 2496. The validity of the Nusselt theory and the range of it is shown. The local hydrodynamic is the most important factor of the increase of the local Sherwood number. The accuracy of the measurements is ± 5%.

Bezeichnungen a Temperaturleitfähigkeit m2/s=/(cp) - c Konzentration, c=¯c + c kmol/m3 - ci0 Konzentration im Flüssigkeitskern kmol/m3 - D Diffusionskoeffizient m2/s - EL-NR Elektrodennummer - Fa Faraday-Konstante A s/kgäq=96,5·106 - g Erdbeschleunigung m/s2 - iG Grenzstromdichte A/m2 - u Geschwindigkeit in x-Richtung, u= + u - U Umfang des Rohres m - v Geschwindigkeit in y-Rich- m/stung, v=¯v + v - V* Volumenstrom m3/s - x Lauflänge, Koordinate in m Strömungsrichtung - xM Meßlänge für den Stoff-Übergang m - xST Startort für den Stoff-Übergang m - y Wegkoordinate senkrecht zur Rohroberfläche m - z Wertigkeit der Elektro-denreaktion kgäq/kmol - ZH Zulaufhöhe m - Wärmeübergangskoeffizient W/m2C - Stoffübergangskoeffizient m/s - Filmdicke m - Wärmeleitfähigkeit W/(mC) - kinematische Viskosität m2/s - Re=u/=V*/U Reynolds-Zahl - Pr=/a=cp/ Prandtl-Zahl - Sc=/D Schmidt-Zahl - Nu= / Nusselt-Zahl - Sh= /D Sherwood-Zahl - SHL lokale Sherwood-Zahl - SHM mittlere Sherwood-Zahl - - zeitlich gemittelt - örtlich gemittelt Die Durchführung der Arbeit am Institut für Verfahrens — und Kältetechnik der ETH Zürich bei Prof. Dr. P. Grassmann wurde ermöglicht durch Zuschüsse der Kommission zur Förderung der wissenschaftlichen Forschung und meiner Eltern.  相似文献   

12.
A. Zosel 《Rheologica Acta》1972,11(2):229-237
Zusammenfassung Mit Hilfe eines Schwingungsviskosimeters mit konzentrischen Zylindern wurde der komplexe SchubmodulG +iG von ABS-Polymeren bei Frequenzen zwischen 10–3 und 50 Hz und Temperaturen zwischen 130 und 250 °C gemessen. Bei hohen Frequenzen ergeben sich keine wesentlichen Unterschiede im Verlauf der Modulkurven, verglichen mit homogenen Schmelzen. Das viskoelastische Verhalten wird hier vor allem durch das Verschlaufungsnetzwerk der kohärenten Phase bestimmt. Bei tiefen Frequenzen verhalten sich ABS-Polymere in der Schmelze dagegen ähnlich wie vernetzte Kautschuke:G wird frequenzunabhängig, steigt proportional zu ·T an und nimmt wesentlich größere Werte an alsG. Es überwiegen also die elastischen Eigenschaften, während die Schmelzen homogener Polymerer bei tiefen Frequenzen vorwiegend viskos sind. Dieses gummielastische Verhalten ist um so ausgeprägter, je höher der Kautschukgehalt, der Pfropfungsgrad der Kautschukteilchen und, bei gleichem Kautschukgehalt, die Teilchenzahl ist.AusG und G läßt sich die komplexe Schwingungsviskosität * berechnen, deren Betrag ¦*¦ bei vielen Kunststoffschmelzen mit der Viskositätsfunktion () bei stationären Scherströmungen übereinstimmt. Bei ABS-Polymeren wird ¦*¦ bei tiefen Frequenzen nicht konstant, sondern steigt mit abnehmender Frequenz stark an. Es existiert also offensichtlich keine konstante Nullviskosität 0 wie bei homogenen Schmelzen.Ein ähnliches viskoelastisches Verhalten wie ABS-Polymere, wenn auch schwächer ausgeprägt, zeigen Kunststoffe mit anorganischen Füllstoffen wie TiO2.
Summary The complex shear moduliG +iG of ABS-polymers were measured by means of a dynamic viscometer with concentric cylinders at frequencies between 10–3 and 50 cps and temperatures between 130 and 250 °C. At high frequencies there are no remarkable differences in the shape of the modulus curves compared with homogeneous melts. The viscoelastic behaviour is here mainly determined by the entanglement network of the coherent phase.At low frequencies molten ABS-Polymers behave like crosslinked rubbers:G becomes independent of frequency, is proportional to ·T and has much greater values thanG. That means that the elastic properties are prevailing, whereas the melts of homogeneous polymers are mainly viscous at low frequencies. This rubberlike behaviour is the more marked, the higher the rubber contents, the degree of grafting of the rubber particles and, with equal rubber contents, the number of particles.FromG andG the complex dynamic viscosity * can be evaluated. For many polymer melts the absolute value ¦*¦ corresponds to the steady-state viscosity (). For ABS-polymers ¦*¦ does not become constant at low frequencies but rises to much higher values with decreasing frequency. Obviously there is no constant zero — shear viscosity as there is for homogeneous melts.A similar viscoelastic behaviour as shown by ABS-polymers, though less marked, is shown by plastics with anorganic fillers like TiO2.


Den Herren Dr.Haaf, Dr.Heinz und Dr.Stein danke ich für die Herstellung der Proben.  相似文献   

13.
Zusammenfassung Es werden Messungen des Wärmeübergangs bei freier Konvektion und Filmsieden an einem elektrisch beheizten Platindraht (d=0, 1 mm) in Wasser in der Nähe des kritischen Punktes angegeben und zur Überprüfung eines theoretischen Grenzschichtmodells herangezogen.Für den Wärmeübergang bei freier Konvektion wird ein vereinfachtes Berechnungsverfahren abgeleitet, das mit zahlreichen Versuchen in Wasser und Kohlendioxid überprüft wird. Bei Filmsieden wird auf die Grenzen einer Darstellung von Versuchsergebnissen in Nusselt-Reyleigh-Diagrammen hingewiesen und eine vereinfachte Berechnungsmethode der Grundkurve des Wärmeübergangs angegeben.
Free convection and film boiling heat transfer in the critical region of water and carbon dioxide
Measurements of free convection and boiling from an electrically heated platinum wire (d=0,1 mm) in water near its critical state are given and taken for checking a theoretical boundary layer modell.For heat transfer at free convection, a simplified calculation method is derived which is tested by several measurements in water and carbon dioxide. For film boiling, the limits of a representation of experimental results in Nusselt-Rayleigh-diagrams are pointed out. A simplified method of calculating the basic curve of film boiling heat transfer is given.

Bezeichnungen A Auftriebsglied - Bi Konstanten - Cm Konstante - Cp spezifische Wärme bei konstantem Druck - d Zylinderdurchmesser - g Erdbeschleunigung - G() Funktion der affinen Verzerrung - G intergraler Mittelwert von G() - h Plattenhöhe - H spezifische Enthalpie - Hfd spezifische Verdampfungswärme - L charakteristische Länge - n Koordinate normal zur Wand - Nu Nußelt-Zahl - P Druck - Pr Prandtl-Zahl - q Wärmestromdichte - Ra Rayleigr-Zahl - S beliebiger Stoffwert - t Celsius-Temperatur - T absolute Temperatur - Wärmeübergangskoeffizient - isobarer Ausdehnungskoeffizient - T Temperaturdifferent T — Tu - Quotient aus Temperaturdifferenzen - Wärmeleitfähigkeit - kinematische Zähigkeit - dimensionslose Koordinate in Wandrichtung - Dichte - dimensionslose Grundgröße des Wärmeübergangs Indizes b Wert bei Bezugszustand - f Zustand der gesättigten Flüssigkeit - korr korrigierter Wert für kleine Durchmesser - L Bezug auf die charakteristische Länge - mod modifizierte Kenngröße - Pl. vertikale Platte - psk Wert im pseudokritischen Zustand - s Sättigungszustand - u Umgebungszustand - w Wert an der Wand - Zyl. horizontaler Zylinder - o Wert aus den Theorien mit unveränderlichen Stoffwerten - Grenzschichtlösung (Gr beim horiz. Zyl.) Auszug aus der von der Fakultät Maschinenwesen und Elektrotechnik der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs genehmigten Dissertation über Wärmeübergang bei freier Konvektion und Filmsieden — Allgemeines theoretisches Berechnungsverfahren und experimentelle Überprüfung im kritischen Gebiet des Diplom-Ingenieurs Michael Reimann. Berichterstatter: Prof. Dr.-Ing. U. Grigull und Prof. Dr. rer. nat. E. Winter. Die Dissertation wurde am 15. Juli 1974 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen und Elektrotechnik am 6 November 1974 angenommen. Tag der Promotion 8. November 1974.Institut A für Thermodynamik Technische Universität München  相似文献   

14.
Zusammenfassung Es wird ein halbanalytisches Berechnungsverfahren zur Bestimmung der instationären Temperaturen von Haut-Steg-Verbindungen vorgestellt, das den Einfluß einer Fügung zwischen Haut (Flansch eines Winkels) und Steg numerisch berücksichtigt. Ausgehend von den Temperaturfunktionen, die sich unabhängig voneinander für die beiden Strukturelemente bei gegebenen Randbedingungen und konstanter Randtemperatur an der Verbindungsstelle ergeben, kann der thermische Übergangswiderstand der Fügung (z.B. einer Nietverbindung) durch Formulierung einer Wärmebilanz sowohl oberhalb als auch unterhalb der Fügung auf einfache Art in die Berechnung einbezogen werden. Das Verfahren, das am Beispiel von Flugzeugstrukturen (versteifte Tragflügelgurtplatte, Tragflügelkasten) für den Sprung der Fluidtemperatur und des Wärmeübergangskoeffizienten untersucht wird, läßt sich auch auf ähnliche Probleme in anderen Ingenieursdisziplinen übertragen.
Semi-analytical calculation of temperature transients in jointed structures
A semi-analytical method is presented for calculating temperature transients in skin-web-configurations including the effect of a thermal joint resistance at the web-skin (flange) junction. Based on the temperature functions independently developed for both elements at given boundary conditions and constant junction temperature the joint resistance can be taken into account easily by formulation of a heat balance above and below the joint. The method, here applied to aircraft structures (stiffened panel, wing box) for the step functions of fluid temperature and heat transfer coefficient can also be extended to similar problems in other engineering fields of application.

Bezeichnungen A, B Abkürzung für Summenausdruck - L Länge - N Nenner, dimensionslos - R Fügungswiderstand - T Temperatur - a Temperaturleitfähigkeit - c spezifische Wärme - d Dicke - f Abkürzung, dimensionslos - g, h Länge, dimensionslos - j Laufvariable der Zeit, ganze Zahl - k Wärmeleitfähigkeit - n Summen-Laufvariable - p Laplace-Variable - q Wärmefluß, dimensionslos - r Fügungswiderstand, dimensionslos - tt Zeit; Zeitelement - x, y Wegkoordinate - Wärmeübertragungskoeffizient - Eigenwert - , Zeitelement; Zeit, dimensionslos - , Wegkoordinate, dimensionslos - Temperatur, dimensionslos - transformierte Temperatur - Dichte Indizes f Fluid - i 1, 2 - j Funktion der Laufvariablen j - k Knoten - 0 Anfangswert - 1 Flansch (Haut) - 2 Steg - Einheits-Triangel  相似文献   

15.
The problem of laminar natural convection flow over a slender frustrum of a cone with constant wall heat flux is treated in this paper. The governing differential equations are solved by a combination of quasilinearization and finite-difference methods. Numerical solutions are obtained for Prandtl numbers from 0.1 to 100 for a range of values of transverse curvature parameter. It is found that the effect of transverse curvature is of great significance in such flows.
Laminare natürliche Konvektion über einem dünnen, senkrechten Kegelstumpf mit konstantem Wand wär mestrom
Zusammenfassung In dieser Arbeit wird das Problem der laminaren, natürlichen Konvektionsströmung öber einem dünnen Kegelstumpf mit konstantem Wandwärmestrom behandelt. Die maßgeblichen Differentialgleichungen werden mit Hilfe einer Kombination von Quasilinearisierung und Differenzenverfahren gelöst. Numerische Lösungen werden für die Prandtl ' sehen Zahlen zwischen 0. l und 100 innerhalb eines Bereiches von Querkrüm mungswerten erhalten. Es wird gezeigt, daß der Einfluß der Querkrümmung in solchen Strömungen von großer Bedeutung ist.

Nomenclature A,B,C constants in the transformation, defined in Eq.(14) - f dependent variable, defined in Eq. (7) - g dependent variable, defined in Eq. (7) - ge gravitational acceleration - k heat conductivity - kn -grid - L characteristic length - Nu Nusselt number - Pr Prandtl number - qw wall heat flux - r radial distance from the axis of the cone - RTVC transverse curvature ratio, defined in Eq.(28) - Re Reynolds number - T temperature - u,v velocity components in the x- and y-directions, respectively - x,y rectangular coordinates Greek Letters dimensionless temperature, defined in Eq.(4) - bulk modulus - cone angle - dynamic viscosity - stream function - , transformed independent variables, defined in Eq. (7) - transverse curvature parameter  相似文献   

16.
This paper presents a new formulation for the laminar free convection from an arbitrarily inclined isothermal plate to fluids of any Prandtl number between 0.001 and infinity. A novel inclination parameter is proposed such that all cases of the horizontal, inclined and vertical plates can be described by a single set of transformed equations. Moreover, the self-similar equations for the limiting cases of the horizontal and vertical plates are recovered from the transformed equations by setting=0 and=1, respectively. Heated upward-facing plates with positive and negative inclination angles are investigated. A very accurate correlation equation of the local Nusselt number is developed for arbitrary inclination angle and for 0.001 Pr .
Wärmeübertragung bei freier Konvektion an einer isothermen Platte mit beliebiger Neigung
Zusammenfasssung Diese Untersuchung stellt eine neue Formulierung der laminaren freien Konvektion von Flüssigkeiten mit einer Prandtl-Zahl zwischen 0,001 und unendlich an einer beliebig schräggestellten isothermen Platte dar. Ein neuer Neigungsparameter wird eingeführt, so daß alle Fälle der horizontalen, geneigten oder vertikalen Platte von einem einzigen Satz transformierter Gleichungen beschrieben werden können. Die unabhängigen Gleichungen für die beiden Fälle der horizontalen and vertikalen Platte wurden für=0 und=1 aus den transformierten Gleichungen wieder abgeleitet. Es wurden erwärmte aufwärtsgerichtete Platten mit positiven und negativen Neigungswinkeln untersucht. Eine sehr genaue Gleichung wurde für die lokale Nusselt-Zahl bei beliebigen Neigungswinkeln und für 0,001 Pr entwickelt.

Nomenclature C p specific heat - f reduced stream function - g gravitational acceleration - Gr local Grashof number,g(T w T w ) x3/v2 - h local heat transfer coefficient - k thermal conductivity - n constant exponent - Nu local Nusselt number,hx/k - p pressure - Pr Prandtl number, v/ - Ra local Rayleigh number,g(T w T )J x3/v - T fluid temperature - T w wall temperature - T temperature of ambient fluid - u velocity component in x-direction - v velocity component in y-direction - x coordinate parallel to the plate - y coordinate normal to the plate Greek symbols thermal diffusivity - thermal expansion coefficient - (Ra¦sin¦)1/4/( Ra cos()1/5 - pseudo-similarity variable, (y/) - dimensionless temperature, (TT )/(T wT ) - ( Ra cos)1/5+(Rasin)1/4 - v kinematic viscosity - 1/[1 +(Ra cos)1/5/( Ra¦sin)1/4] - density of fluid - Pr/(1+Pr) - w wall shear stress - angle of plate inclination measured from the horizontal - stream function - dimensionless dynamic pressure  相似文献   

17.
Zusammenfassung Es wird eine Übersicht zum Wärmeübergang bei freier Konvektion infolge unterschiedlich beheizter Seitenwände in rechtwinkligen Behältern mit Seitenverhältnissen im Bereich 10–2H/L102 gegeben. Die aus der Literatur entnommenen Wärmeübergangsbeziehungen sind in einer Tabelle zusammengestellt. Anhand einer graphischen Darstellung der FormNu=f(Ra, A) fürA=0,1, 1 und 10 werden die Ergebnisse diskutiert.
Heat transfer at free convection in lateral heated rectangular cavities
A review is given on free convection heat transfer in rectangular cavities with differentially heated end-walls having aspect ratios in the range 10–2H/L102. The heat transfer correlations taken from the literature are tabulated. The deviation between these formulations are discussed with the help of graphs showing the Nußelt-number versus the Rayleigh-number for different aspect ratios.

Abbreviation

Formelzeichen a Temperaturleitfähigkeit - c p spezifische Wärmekapazität - g Erdbeschleunigung - l, m, n Exponenten in den Gleichungen (4.2) und (3.4) - p Druck - q Wärmestromdichte - t Zeit - u Geschwindigkeitskomponente inx-Richtung - Geschwindigkeitskomponente iny-Richtung - x, y Koordinaten - A Seitenverhältnis - H Höhe des Behälters - K Konstante in Gleichung (6 c) - K1 Konstante in Gleichungen (13 a, b, c) - K2 Konstante in Gleichung (13b) - L Länge des Behälters - T Temperatur - Wärmeübergangskoeffizient - thermischer Ausdehnungskoeffizient - Konstante in Gleichung (11) - dynamische Viskosität - dimensionslose Temperatur - Wärmeleitfähigkeit - kinematische Viskosität - dimensionslose Höhenkoordinate - Dichte Indices 0 Bezugszustand für die Dichte - 1,k kalte Seite - 2,h warme Seite - L auf die Behälterlänge bezogen - H auf die Behälterhöhe bezogen Danksagung Die Autoren danken Herrn O.Just für die Unterstützung bei der Literaturrecherche und der Deutschen Forschungsgemeinschaft für die Förderung der Untersuchung.  相似文献   

18.
Zusammenfassung Zur Berechnung der dynamischen Idealviskosität Ideal (T) und der Idealwärmeleitfähigkeit ideal (T) benötigt man die kritische TemperaturT kr, das kritische spezifische Volum kr, die MolmasseM, den kritischen Parameter kr und die molare isochore WärmekapazitätC v(T). Sowohl das theoretisch, als auch das empirisch abgeleitete erweiterte Korrespondenzgesetz ergeben eine für praktische Zwecke ausreichende Genauigkeit für die Meßwertwiedergabe, die bei den assoziierenden Stoffen und den Quantenstoffen jedoch geringer ist als bei den Normalstoffen.
The extended correspondence law for the ideal dynamic viscosity and the ideal thermal conductivity of pure substances
For the calculation of the ideal dynamic viscosity Ideal (T) and the ideal thermal conductivity ideal (T) the critical temperatureT kr, the critical specific volumev kr, the molecular massM, the critical parameter kr, and the molar isochoric heat capacityC v(T) is needed. Not only the theoretically determined but also the empirically determined extended correspondence law gives for practical use a good representation of the measured data, which for the associating substances and the quantum substances is not so good as for the normal substances.
  相似文献   

19.
Summary Earlier parts of this series have described a technique based on the collapse of single bubbles in the fluids for studying the elongational rheology of viscoelastic solutions and melts of moderate viscosities ( 0 > 102p) at relatively high strain rates . The present paper describes the modelling of bubble collapse with both rate and integral type constitutive relations using a body coordinate system. Predictions of the stress at the bubble wall as a function of time during collapse from a BKZ model and a modified corotational Maxwell model compared favorably with experimental data for two polymer solutions, 1% polyacrylamide in water/glycerine and 2% hydroxypropyl cellulose in water.
Zusammenfassung In vorangehenden Veröffentlichungen dieser Reihe wurde eine Methode beschrieben, mit Hilfe derer man aus dem Zerfall von einzelnen Blasen in einer Flüssigkeit auf die Dehn-Rheologie viskoelastischer Lösungen und Schmelzen mittlerer Viskosität ( 0 > 102 P) bei relativ hohen Dehngeschwindigkeiten schließen kann. Die vorliegende Untersuchung beschreibt Modelle des Blasenzerfalls mit Hilfe von Stoffgleichungen sowohl vom rate- als auch vom Integral-Typ, wobei ein körperfestes Koordinatensystem benutzt wird. Die Voraussagen der Spannung an der Blasenwand als Funktion der Zeit während des Zerfalls bei Verwendung eines BKZ- und eines modifizierten korotatorischen Maxwell-Modells zeigen eine recht gute Übereinstimmung mit experimentellen Werten, die an zwei Polymerlösungen, nämlich einer 1%igen Polyacrylamid-Lösung in einer Wasser-Glycerin-Mischung und einer 2%igen wäßrigen Hydropropylcellulose, erhalten worden sind.

Nomenclature a material constant - b material constant - g metric tensor, space coordinates - m material constant - n material constant - p pressure - P G pressure within bubble - P R pressure outside bubble at the wall - P pressure far away from the bubble - R bubble radius - dR/dt - R 0 initial bubble radius - t time - u velocity - U potential function - Y R/R 0 Greek symbols covariant body metric tensor - surface tension - rate of deformation matrix, II -second invariant of - strain rate - 0 zero shear rate viscosity - e elongational viscosity - ef effective viscosity - 1, 2, 3 coordinates in body system - 1 1/R 0 3 - body stress tensor - density - space stress tensor - relaxation time - ef effective relaxation time - bubble pressure function, defined in eq. [19] - vorticity tensor With 11 figures and 1 table  相似文献   

20.
Zusammenfassung Zur Klärung der physikalischen Vorgänge im Verdampferteil einer Filmverdampfungsbrennkammer wird in Erweiterung der adiabaten Verdunstung der Fall der einseitig benetzten ebenen Platte behandelt, die sowohl im Gleichals auch im Gegenstrom von der heißen Außenluft umströmt wird. Die für beide Strömungsfälle maßgebenden Grenzschichtgleichungen werden simultan unter Berücksichtigung temperatur- und konzentrationsabhängiger Stoffwerte mit einem impliziten Differenzenverfahren gelöst. Dabei ergeben sich für den Gleichstrom ähnliche Lösungen des gekoppelten Gleichungssystems, die mit den ähnlichen, für die adiabate Verdunstung geltenden Lösungen verglichen werden. Die Berechnung der durch den Stoffübergang beeinflußten Grenzschicht parameter zeigt, daß das Modell der Gegenstromanordnung, bei der sich nichtähnliche Profile entlang der Filmoberfl äche einstellen, für einen möglichen Einsatz in einer Filmverdampfungsbrennkammer am besten geeignet ist.
Theoretical investigation on the binary laminar boundary-layer flow along a vaporizing liquid layer at non-adiabatic evaporation
For clarification the physical process in the evaporating part of a film-evaporation combustion-chamber in addition to the adiabatic evaporation the case of a one-sided wet plate in co- and counter-current hot air flow is presented. The boundary-layer equations for both streams are solved simultaneously with an implicit finite-difference method taking into account variable fluid properties. Thereby the similar solutions obtained for the co-current flow are compared with the corresponding similar solutions for the case of the adiabatic evaporation. Contrary to the co-current flow the counter-current flow yields non-similar solutions and the computation of the boundary-layer parameters influenced by the evaporation mass-flow shows, that the model of counter-current flow is best suitable for application in a film-evaporation combustion-chamber.

Bezeichnungen Aj, Bj Abkürzungen in der allg. Differenzen - Cj gleichung (36) - c Massenkonzentration, bezogen auf Gemischmasse - cf Dimensionsloser örtlicher Reibungsbeiwert - cp Spezifische Wärmekapazität - D12 Diffusionskoeffizient - h Enthalpie des Gasgemisches - K1, K2 Abkürzungen in der Gl. (5) - K5, K6 Abkürzungen in der Gl.(22) - L Plattenlänge - M Molmasse - m1 Massenstromdichte, verdunstende Masse je Flächen- und Zeiteinheit - m* Dimensionslose Massenstromdichte, Verdunstungsparameter nach Gl.(32) - m** Örtliche dimensionslose Massenstromdichte nach Gl. (33) - PGr Stellvertretende Größe für die Grenzschicht parameter cf, StT und Stm nach Gl. (34) - p Statischer Druck (=Summe der Partialdrücke) - p1w Sättigungsdruck an der Filmoberfläche - q Wärmestromdichte - r Verdampfungsenthalpie - r 1w * Dimensionslose Verdampfungsenthalpie nachGl.(25) - u Geschwindigkeit in x-Richtung - v Geschwindigkeit in y-Richtung - x Längskoordinate - ¯x Längskoordinate für den Gegenstrom s. Bild 14 - xA Wärmeisolierte Anlaufstrecke s. Bild 14 - x* Dimensionslose Längskoordinate für das Dreipunkt-Differenzenverfahren x*=x/s - y Querkoordinate - y* Normierte Querkoordinate für das Drei punkt-Differenzenverfahren y*=y/s - 1 Dimensionslose Verdrängungsdicke nach Gl.(27) - 2 Dimensionslose Impulsverlustdicke nach Gl.(28) - c Konzentrationsgrenzschichtdicke (y-Wert für =0.99) - s Strömungsgrenzschichtdicke (y-Wert für u/u=0.99) - T Temperaturgrenzschichtdicke (y-Wert für = 0.99) - T Dimensionsloser Wandabstand nach Gl.(37) - Normierte absolute Temperatur (= (T – Tw)/(T – T w) - Wärmeleitfähigkeit - Dynamische Zähigkeit - Kinematische Zähigkeit - Dichte - Schubspannung - Allgemeine abhängige Variable (s. Tabelle 1) Normierte Massenkonzentration (=(c1–c1w/(c1–c1w)) - Nu Nußelt-Zahl (= L(T/yT/y)w/(T–Tw)) - Pr Prandtl-Zahl (=cp/) - Rex Reynolds-Zahl (=ux/) - ReL Reynolds-Zahl (=uL/) - Res Reynolds-Zahl (= us/) - Sc Schmidt-Zahl (=/D12) - Stm Stanton-Zahl des Stoffübergangs nach Gl.(31) - StT Stanton-Zahl des Wärmeübergangs nach Gl.(30) Indizes 0 Bezogen auf Strömung ohne Stoffübergang - 1 Gas 1 (Benzoldampf) - 2 Gas 2 (Luft) - Ungestörter Anströmzustand der Luft - ad Charakteristische Werte des adiabaten Strömungsfalles - Geg Charakteristische Werte des Gegenstroms - Gl Charakteristische Werte des Gleichstroms - j Diskreter Punkt in y-Richtung - k Diskreter Punkt in x-Richtung - w Werte an der Plattenoberfläche - + Werte an der benetzten Plattenoberseite - – Werte an der trockenen Plattenunterseite Auszug aus der von der Fakultät für Maschinenbau und Elektrotechnik der Technischen Universität Braunschweig zur Erlangung des akademischen Grades eines Doktor-Ingenieurs genehmigten Dissertation über Theoretische Untersuchung der laminaren Zweistoffgrenzschichtströmung längs einer benetzten, ebenen Platte bei nichtadiabater Verdunstung des Diplom-Ingenieurs Klaus Pientka. Berichterstatter: Prof. Dr. phil. Dr.-Ing. E.h. H. Schlichting und Prof. Dr.-Ing. D. Hummel. - Die Dissertation wurde am 14 Juni 1976 bei der Technischen Universität eingereicht. Die mündliche Prüfung fand am 23. November 1976 statt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号