首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reverse micelles formed by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in isooctane (IO) and water have long been used as a means to provide a confined aqueous environment for various applications. In particular, AOT reverse micelles have often been used as a template to mimic membrane-water interfaces. While earlier studies have shown that membrane-binding peptides can indeed be incorporated into the polar cavity of AOT reverse micelles where they mostly fold into an alpha-helical structure, the underlying interactions leading to the ordered conformation are however not well understood. Herein, we have used circular dichroism (CD) and infrared (IR) spectroscopies in conjunction with a local IR marker (i.e., the CN group of a non-natural amino acid, p-cyano-phenylalanine) and a global IR reporter (i.e., the amide I' band of the peptide backbone) to probe the conformation as well as the hydration status of an antimicrobial peptide, mastoparan x (MPx), in AOT reverse micelles of different water contents. Our results show that at, w0=6, MPx adopts an alpha-helical conformation with both the backbone and hydrophobic side chains mostly dehydrated, whereas its backbone becomes partially hydrated at w0=20. In addition, our results suggest that the amphipathic alpha-helix so formed orients itself in such a manner that its positively charged, lysine-rich, hydrophilic face points toward the negatively charged AOT head groups, while its hydrophobic face is directed toward the polar interior of the water pool. This picture is in marked contrast to that observed for the binding of MPx to phospholipid bilayers wherein the hydrophobic surface of the bound alpha-helix is buried deeper into the membrane interior.  相似文献   

2.
The amide I' band of a polypeptide is sensitive not only to its secondary structure content but also to its environment. In this study we show how degrees of hydration affect the underlying spectral features of the amide I' band of two alanine-based helical peptides. This is achieved by solubilizing these peptides in the water pool of sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles with different water contents or w0 values. In agreement with several earlier studies, our results show that the amide I' band arising from a group of dehydrated helical amides is centered at approximately 1650 cm-1, whereas hydration shifts this frequency toward lower wavenumbers. More importantly, temperature-dependent infrared studies further show that these helical peptides undergo a thermally induced conformational transition in reverse micelles of low w0 values (e.g., w0=6), resulting in soluble peptide aggregates rich in antiparallel beta-sheets. Interestingly, however, increasing w0 or water content leads to an increase in the onset temperature at which such beta-aggregates begin to form. Therefore, these results provide strong evidence suggesting that dehydration facilitates aggregate formation and that removal of water imposes a free energy barrier to peptide association and aggregation, a feature that has been suggested in recent simulation studies focusing on the mechanism of beta-amyloid formation.  相似文献   

3.
A wide investigation of the solubilization of the water-soluble salt Yb(NO3)3 in sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles and AOT liquid crystals has been carried out. After saturation of water/AOT/organic solvent w/o microemulsions with pure Yb(NO3)3, the Yb(NO3)3/AOT composites were prepared by complete evaporation under vacuum of the volatile components (water and organic solvent) of the salt-containing microemulsions. It was observed that these composites can be totally dissolved in pure n-heptane or CCl4, allowing the solubilization of a noticeable amount of Yb(NO3)3 in quite dry apolar media. By UV–vis–NIR, FT-IR, and 1H NMR spectroscopies, some information on the state of Yb(NO3)3 within AOT reverse micelles were acquired, whereas by small angle X-ray scattering (SAXS), it has been ascertained that Yb(NO3)3 is quite homogeneously distributed as very small clusters among the reverse micelles. An analysis of SAXS and wide-angle X-ray scattering spectra of Yb(NO3)3/AOT composites leads to the hypothesis that, also in these systems, Yb(NO3)3 is dispersed in the surfactant matrix as very small clusters.  相似文献   

4.
The excited-state proton transfer and phototautomerization of 7-hydroxy-4-methylcoumarin (7H4MC) dye has been studied in the confined water pools of AOT reverse micelles using steady-state and time-resolved fluorescence measurements. In the "dry" reverse micelles ([water]/[AOT], w(0) = 0), only the neutral form of the dye is present both in the ground and the excited states. At higher w(0) values, three prototropic forms, namely, neutral, anionic, and tautomeric, can be identified in the excited state, although only the neutral form of the dye is present in the ground state. From steady-state fluorescence results and time-resolved area-normalized emission spectra (TRANES), it is indicated that the anionic and tautomeric forms of the dye are the excited-state reaction products and that they arise apparently independently from the excited neutral form of the dye. In bulk water, however, there is no evidence of the tautomeric species and only the anionic form is observed in the excited state. The fluorescence quenching results of the three forms of 7H4MC by the different quenchers, potassium iodide, aniline, and N, N-dimethylaniline, suggest that the distribution of 7H4MC molecules in the reverse micelles is not diverse but that the different prototropic forms arise from the same population of the excited dye in the interfacial region.  相似文献   

5.
The refolding kinetics of the reduced, denatured hen egg white lysozyme in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)-isooctane-water reverse micelles at different water-to-surfactant molar ratios has been investigated by fluorescence spectroscopy and UV spectroscopy. The oxidative refolding of the confined lysozyme is biphasic in AOT reverse micelles. When the water-to-surfactant molar ratio (omega 0) is 12.6, the relative activity of encapsulated lysozyme after refolding for 24 h in AOT reverse micelles increases 46% compared with that in bulk water. Furthermore, aggregation of lysozyme at a higher concentration (0.2 mM) in AOT reverse micelles at omega 0 of 6.3 or 12.6 is not observed; in contrast, the oxidative refolding of lysozyme in bulk water must be at a lower protein concentration (5 microM) in order to avoid a serious aggregation of the protein. For comparison, we have also investigated the effect of AOT on lysozyme activity and found that the residual activity of lysozyme decreases with increasing the concentration of AOT from 1 to 5 mM. When AOT concentration is larger than 2 mM, lysozyme is almost completely inactivated by AOT and most of lysozyme activity is lost. Together, our data demonstrate that AOT reverse micelles with suitable water-to-surfactant molar ratios are favorable to the oxidative refolding of reduced, denatured lysozyme at a higher concentration, compared with bulk water.  相似文献   

6.
Sodium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micellar medium has been used to study the photoinduced electron-transfer (ET) reactions between some coumarin derivatives and amines, namely, aniline (AN) and N,N-dimethylaniline (DMAN) at different w(0) (w(0) = [water]/[AOT]) values, to explore the appearance of Marcus inversion and also the possible role of w(0), if any, on the Marcus correlation curves. The coumarin derivatives are found to partition between the heptane-like and the water-like phases of the reverse micelles, and their locations have been confirmed by time-resolved anisotropy measurements. Fluorescence quenching is found to depend both on the location of the coumarin molecules and on the hydrophobicity of the amine donors. Various aspects such as the effect of differential partitioning of the quenchers, the location of the probes in the two phases, the diffusion of the reactants in the micellar phase, etc. have been considered to rationalize the fluorescence quenching rates in reverse micelles. Rotational relaxation times and the diffusion parameters estimated from the anisotropy results do not show good correlation with the observed quenching rates indicating that the diffusion of reactants has no role in the quenching kinetics in reverse micelles. Marcus inversion behavior has been observed for the coumarin-amine systems in the water-like phase at a relatively high exergonicity of approximately 1.2 eV suggesting that the solvent reorganization energy contributes fully to the free energy of activation for the ET reactions in the present systems. This is in accordance with the fast solvent relaxation dynamics reported in reverse micelles. Quenching rates in the water-like phase are found to decrease or increase marginally with increasing w(0) for the coumarin-DMAN and coumarin-AN systems, respectively. This is explained on the basis of the changing solubility of these amines in the water-like phase with changing w(0) values of the reverse micelles. In the heptane-like phase, no clear inversion in the quenching rate versus free energy plot could be observed because the study could not be extended to higher exergonicity due to nonsolubility of the dye C151 in this phase. Present results, especially in the water-like phase, suggest that the confinement of reactants in micellar media can effectively remove the influence of reactant diffusion on bimolecular ET rates and thus make the systems more conducive for the observation of the Marcus inverted region.  相似文献   

7.
The higher order structure of proteins solubilized in an bis(2-ethylhexyl) sulfosuccinate sodium (AOT) reverse micellar system was investigated. From circular dichroic (CD) measurement, CD spectra of cytochrome c, which is solubilized at the interface of reverse micelles, markedly changed on going from buffer solution to the reverse micellar solution, and the ellipticity values in the far- and near-UV regions decreased with decreasing the water content (W0: molar ratio of water to AOT), indicating that the secondary and tertiary structures of cytochrome c changed with the water content. The ellipticity of ribonuclease A, which is solubilized in the center of micellar water pool, in the near-UV region was dependent on W0 and became minimum when W0 of ca. 8 while the ellipticity in the far-UV region was almost constant, indicating that the tertiary structure of ribonuclease A was affected by the water content, but the secondary structure was conserved. The degree of curvature of the micellar interface appears to influence the protein structure because the reverse micelle size is linearly proportional to the W0 value. As evidence of this, when the micelle size was comparable to the protein's dimensions, the structures were more affected by the water content. Judging from the dependence of the factor influencing the protein structure on the protein species, the location of solubilized protein in reverse micelles is significantly related to whether the protein structure in the system is affected by the micellar interface. In the cases of cytochrome c and lysozyme, the ellipticity against W0 was dependent on the AOT concentration. In contrast, ribonuclease A gave very similar ellipticity values whatever the AOT concentration. In the n-hexane micellar system, cytochrome c exhibited lower ellipticity values and ribonuclease A in the lower W0 range (W0 < ca. 8) higher ellipticity values. These results indicated that the interaction between the protein and the micellar interface is a dominant factor influencing the protein structure in reverse micelles, and that it is governed by the location of solubilized proteins and the state of the micellar interface.  相似文献   

8.
Based on the studies of their physical properties such as aqueous solution uptake, electric conductivity, and microstructure, CTAB/hexanol/water reverse micelles (CTAB, cetyltrimethyl ammonium bromide) were used to prepare ZrO2-Y2O3 nanoparticles. The relationship between the micelle microstructure and size, morphology, and aggregate properties of particles prepared was also investigated. It has been found that with high CTAB concentration ([CTAB] > 0.8 mol/l), the reverse micelles can solubilize a sufficient amount of aqueous solution with high metallic ion concentration ( approximately 1.0 mol/L), while the microstructure of the reverse micelles keeps unchanged. The most important factor affecting the size and shape of reverse micelles was found to be the water content w0 (w0, molar ratio of water to surfactant used). When both the CTAB concentration and the w0 values are low, the diameters of reverse micelles are below 20 nm, and the ZrO2-Y2O3 particles prepared are also very small. However, the powders obtained were found to form a lot of aggregates after drying and calcination. High CTAB concentration, high w0 value, and high metallic ion concentration in the aqueous phase for high powder productivity were found to be the suitable compositions of reverse micelles for preparing high-quality ZrO2-Y2O3 nanoparticles. Under these conditions, the reverse micelles are still spherical in shape even the reverse micellar system is nearly saturated with aqueous solutions. These reverse micelles were found to have a diameter of between 60 and 150 nm and the ZrO2-Y2O3 particles prepared therefrom range from 30 to 70 nm with spherical shape and not easy to form aggregates. Copyright 1999 Academic Press.  相似文献   

9.
Abstract— Steady-state and time-resolved fluorescence emission from the single tryptophan residue of somatostatin, and the kinetics of quenching of this emission, were studied in aqueous solution and in reverse micelles of sodium bis (2-ethylhexyl) sulfosuccinate (AOT)/water/isooctane, a system that mimics the water-membrane interface well- Incorporation into micelles caused blue shifts and reduced band-widths of the emission peaks and altered the quantum yields with respect to emission from bulk water. Steady-state anisotropy values also increased considerably on micellization. These observations point to reduced polarity of the environment around the Tip residue of the peptide, as well as restricted freedom of its rotational motions, due to transfer from the aqueous to the micellar phase. Fluorescence emission kinetics of the Tip moiety followed biexponential decay laws in both aqueous and micellar media. Static and dynamic quenching constants were measured for acrylamide and CC14 quenchers localized in the micellar and organic pseudophases, respectively, using both steady-state and time-resolved experiments. The efficiency of dynamic quenching by acrylamide became vanishingly small in going from water to reverse micelles, in sharp contrast to the comparable quenching efficiencies exhibited by CC14 in micelles and acrylamide in water. The circular dichroic (CD) spectrum of the native peptide in water indicated the possibility of some amount of P-type secondary structure being present. Conformational analysis of CD spectra in micelles showed that the relative amount of this structural feature was enhanced for the micellized peptide but was insensitive to the water content of micelles. The above results, put together, indicate that the Trp-8 residue in somatostatin is likely to be located in the close neighborhood of the water-AOT molecular interface, where the water molecules are strongly immobilized. This work also demonstrates the role of reverse micelles as a convenient membrane-mimetic medium for the study of membrane interactions of bioactive peptides.  相似文献   

10.
The photophysical parameters of two probes with largely different hydrophobic character, namely, coumarin 1 and coumarin 343, are investigated in sodium bis‐(2‐ethylhexyl)sulfosuccinate (AOT)/hexane/water reverse micelles at various water/AOT molar ratio w0. Correlation of photophysical parameters such as fluorescence quantum yield, fluorescence lifetime, and emission maxima with w0 indicate distinctly different trends below and above w0≈7 for both probes. The variation of the average rotational correlation times obtained from fluorescence anisotropy decays for both probes in reverse micelles further corroborate the above observation. Similar studies were also performed in nonaqueous reverse micelles with acetonitrile as polar solvent. Similar to aqueous reverse micelles, breaks in the photophysical parameters with increasing acetonitrile/AOT molar ratios w0 were also observed in these cases, although at a much lower w0 value of 3. The present results indicate that around w0≈7 for aqueous reverse micelles (and around w0≈3 for nonaqueous reverse micelles) a distinct change occurs in the probe microenvironment, which is rationalized on the basis of the relative populations of interfacial and core water. We propose that until the ionic head groups and counterions are fully solvated by polar solvents, that is, up to w0≈7 (or w0≈3), the interfacial water population dominates. Above these molar ratios coalescence of excess water molecules with each other to form truncated H‐bonded water clusters leads to a sizable population of core water. This is further substantiated by changes in the IR absorption spectra for the O? D stretching mode of diluted D2O in reverse micelles with varying w0. Critical comparison of the present results with relevant literature reports provide clear support for the proposals made on water structure in reverse micelles. The role of relative size of the probe and the reverse micelles for differences in polar solvent to AOT ratios (w0=7 and w0=3) in the observed breaks in the two types of reverse micelles is also discussed.  相似文献   

11.
The activity and stability of Chromobacterium viscosum lipase (glycerolester hydrolase, EC 3.1.1.3)-catalyzed olive oil hydrolysis in sodium bis (2-ethyl-1-hexyl)sulfosuccinate (AOT)/isooctane reverse micelles is increased appreciably when low molecular weight polyethylene glycol (PEG 400) is added to the reverse micelles. To understand the effect of PEG 400 on the phase behavior of the reverse micellar system, the phase diagram of AOT/PEG 400/water/isooctane system was studied. The influences of relevant parameters on the catalytic activity in AOT/PEG 400 reverse micelles were investigated and compared with the results in the simple AOT reverse micelles. In the presence of PEG 400, the linear decreasing trend of the lipase activity with AOT concentration, which is observed in the simple AOT reverse micelles, disappeared. Enzyme entrapped in AOT/PEG reverse micelles was very stable, retaining>75% of its initial activity after 60 d, whereas the half-life in simple AOT reverse micelles was 38 d. The kinetics parameter maximum velocity (V max)exhibiting the temperature dependence and the activation energy obtained by Arrhenius plot was suppressed significantly by the addition of PEG 400.  相似文献   

12.
Many fluorescent chromophores have been employed to investigate the nature and dynamics of the water confined in reverse micelles (RMs). However, some questions remain as to the location of a probe in a RM and the diameter of the RM at which the physical characteristic of the water inside RMs becomes similar to that of bulk water. In this work, we systematically studied the photophysics of IR125 and C152 in AOT RMs at different w(0) by means of static absorption and fluorescence spectroscopy as well as time-resolved fluorescence spectroscopy. We obtained the absorption maxima, fluorescence emission maxima, fluorescence lifetime, and reorientation time of IR125 and C152 in AOT RMs at corresponding w(0). We found that all obtained photophysical parameters of IR125 and C152 in AOT RMs as a function of w(0) have a distinct changeover point around w(0) = 8, indicating that there is a dramatic change in the nature of the water confined in AOT RMs around w(0) = 8. The observed changeover point around w(0) = 8 is well in agreement with the Satpati's report (ChemPhysChem, 2009, 10, 2966). In addition, we observed that the measured reorientation time of IR125 in AOT RMs increases with the increase of w(0), which is opposite to the trend of change in the measured reorientation time of C152 in AOT RMs with the increase of w(0). We found that IR125 prefers to reside in the water pool of AOT RMs and that C152 prefers to reside in the outer side of the interfacial region or the nonpolar n-heptane phase of AOT RMs. Furthermore, we found that the time-resolved fluorescence anisotropy of IR125 in smaller w(0) AOT RMs primarily measures the reorientation of RMs and the time-resolved fluorescence anisotropy of IR125 in larger w(0) AOT RMs measures the reorientation of IR125 in the water pool confined in RMs. This work demonstrated that IR125 is an excellent probe to study the nature and dynamics of the water confined in AOT RMs.  相似文献   

13.
Intramolecular charge transfer (ICT) reaction in a newly synthesized molecule, of 4-(1-morpholenyl) benzonitrile (M6C), in AOT/water/heptane reverse micelles at different pool sizes has been studied by using steady-state and time-resolved fluorescence emission spectroscopy. The pool size dependences of the reaction equilibrium constant and reaction rate have been explained in terms of the average polarity of the confined solvent pools estimated from the fluorescence emission Stokes shift of a nonreactive probe, coumarin 153, dissolved in these microemulsions. The complex permittivity measurements in the frequency range 0.01相似文献   

14.
Lü Rong 《中国化学》2011,29(3):405-410
The photophysical property of the tricarbocyanine dye IR144 has been extensively studied in non‐aqueous solvents. However, as a potential near‐infrared biomedical imaging probe, the photophysical property of IR144 in water is still little known. So, the aggregation behaviors of IR144 in water with steady‐state absorption spectroscopy and integrated polarization dependent femtosecond pump‐probe spectroscopy were investigated. Through comparing the absorption spectral bandshape of IR144 in water and in water pool of AOT reverse micelles, It is found that IR144 form dimer aggregates in water even at very low concentration (<1.0×10?7 mol·L?1). And the absorption spectrum of the IR144 aggregates always displays a bimodal feature, which is independent of the dye concentration ranging from 1.0×10?7 to 1.0×10?4 mol·L?1. For better understanding the aggregation behaviors of IR144 in water, we measured the ground state recovery kinetics and the reorientation kinetics of IR144 in water and in water pool of AOT reverse micelles (W0=[H2O]/[AOT], W0=40). It is found that the fluorescence quantum yield of IR144 in water is lower than that in water pool of AOT reverse micelles, and the reorientation time of IR144 in water is slower than that in water pool of AOT reverse micelles. Those kinetic measurements also verify that IR144 exists as dimer aggregates in water.  相似文献   

15.
The recombination of thiocyanate anion radicals, (SCN) 2 , formed pulse radiolytically within the water pools of reverse micelles stabilized with anionic AOT and nonionic Igepal surfactants, was proved as an indicator reaction to study intermicellar exchange. It was found that the exchange process is slower inIgepal than in AOT reverse micelles with the same water to surfactant ratio. The apparent activation enthalpy and entropy of the exchange process were determined in different alkanes. For the AOT and Igepal reverse micelles the activation parameters increase with the droplet size, but for the AOT systems they do not significantly change with the increase of droplet concentration. For non-percolated systems the activation parameters for Igepal reverse micelles approach those for AOT reverse micelles. This result supports existing suggestions that the mechanism of intermicellar exchange does not differ in principle between reverse micelles stabilized with ionic and nonionic surfactants.  相似文献   

16.
6-Propionyl-2-(N,N-dimethyl)aminonaphtahalene, PRODAN, is widely used as a fluorescent molecular probe due to its significant Stokes shift in polar solvents. It is an aromatic compound with intramolecular charge-transfer (ICT) states which can be particularly useful as sensors. In this work, we performed absorption, steady-state, time-resolved fluorescence (TRES), and time-resolved area normalized emission (TRANES) spectroscopies on PRODAN dissolved in nonaqueous reverse micelles. The reverse micelles are composed of polar solvents/sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT)/n-heptane. Sequestered polar solvents included ethylene glycol (EG), propylene glycol (PG), glycerol (GY), formamide (FA), dimethylformamide (DMF), and dimethylacetamide (DMA). The experiments were performed with varying surfactant concentrations at a fixed molar ratio W(S) = [polar solvent]/[AOT]. In every reverse micelle studied, the results show that PRODAN undergoes a partition process between the external solvent and the reverse micelle interface. The partition constants, K(p), are quantified from the changes in the PRODAN emission and/or absorption spectra with the surfactant concentration. The K(p) values depend strongly on the encapsulated polar solvent and correlate quite well with the AOT reverse micelle interface's zones where PRODAN can exist and emits. Thus, the partition toward the reverse micelle interface is strongly favored in DMF and DMA containing micelles where the PRODAN emission comes only from an ICT state. For GY/AOT reverse micelles, the K(p) value is the lowest and only emission from the local excited (LE) state is observed. On the other hand, for EG/AOT, PG/AOT, and water/AOT reverse micelles, the K(p) values are practically the same and emission from both states (LE and ICT) is simultaneously detected. We show here that it is possible to control the PRODAN state emission by simply changing the properties of the AOT reverse micelle interfaces by choosing the appropriate polar solvent to make the reverse micelle media. Indeed, we present experimental evidence with the answer to the long time question about from which state does PRODAN emit, a process that can be controlled using the unique reverse micelle interfaces properties.  相似文献   

17.
Stabilizing effect of low concentrations of urea on reverse micelles   总被引:2,自引:0,他引:2  
Urea is a well-known destabilizing agent for biopolymers like proteins and molecular aggregates like micelles and reverse micelles. Several theories have been proposed to explain the destabilizing/denaturing effect of urea. In this work, we present evidence for a stabilizing effect of a low concentration (<1 M) of urea incorporated in the central pool of AOT/n-heptane/water reverse micelles. Static light-scattering experiments were performed to measure (w0)cr--the molar ratio of water to AOT beyond which the micelles become unstable--as a function of the concentration of urea in the central water pool. The stabilizing effect of urea is reflected in an increase in the value of (w0)cr at low urea concentrations over that in the absence of urea. Dynamic light-scattering experiments show that the hydrodynamic radius of the micelles is smaller at low urea concentrations (<1 M) than in the absence of urea. Size-distribution analysis shows that for w0=20 the microemulsion containing 0.5 M urea in its pool is significantly more monodisperse than that containing no urea. Temperature-dependent studies in the range 15-65 degrees C indicate that the magnitude of this stabilizing effect decreases with increasing temperature, vanishing at temperatures higher than 65 degrees C. A model is proposed to explain the above results.  相似文献   

18.
The effects of low temperature and ionic strength on water encapsulated within reverse micelles were investigated by solution NMR. Reverse micelles composed of AOT and pentane and solutions with varying concentrations of NaCl were studied at temperatures ranging from 20 degrees C to -30 degrees C. One-dimensional (1)H solution NMR spectroscopy was used to monitor the quantity and structure of encapsulated water. At low temperatures, e.g., -30 degrees C, reverse micelles lose water at rates that are dependent on the ionic strength of the aqueous nanopool. The final water loading (w0 = [water]/[surfactant]) of the reverse micelles is likewise dependent on the ionic strength of the aqueous phase. Remarkably, water resonance(s) at temperatures between -20 degrees C and -30 degrees C displayed fine structure indicating the presence of multiple transient water populations. Results of this study demonstrate that reverse micelles are an excellent vehicle for studies of confined water across a broad range of conditions, including the temperature range that provides access to the supercooled state.  相似文献   

19.
The dynamics of solvent and rotational relaxation of Coumarin 480 and Coumarin 490 in glycerol containing bis-2-ethyl hexyl sulfosuccinate sodium salt (AOT) reverse micelles have been investigated with steady-state and time-resolved fluorescence spectroscopy. We observed slower solvent relaxation of glycerol confined in the nanocavity of AOT reverse micelles compared to that in pure glycerol. However, the slowing down in the solvation time on going from neat glycerol to glycerol confined reverse micelles is not comparable to that on going from pure water or acetonitrile to water or acetonitrile confined AOT reverse micellar aggregates. While solvent relaxation times were found to decrease with increasing glycerol content in the reverse micellar pool, rotational relaxation times were found to increase with increase in glycerol content.  相似文献   

20.
Water dynamics as reflected by the spectral diffusion of the water hydroxyl stretch were measured in w(0) = 2 (1.7 nm diameter) Aerosol-OT (AOT)/water reverse micelles in carbon tetrachloride and in isooctane solvents using ultrafast 2D IR vibrational echo spectroscopy. Orientational relaxation and population relaxation are observed for w(0) = 2, 4, and 7.5 in both solvents using IR pump-probe measurements. It is found that the pump-probe observables are sensitive to w(0), but not to the solvent. However, initial analysis of the vibrational echo data from the water nanopool in the reverse micelles in the isooctane solvent seems to yield different dynamics than the CCl(4) system in spite of the fact that the spectra, vibrational lifetimes, and orientational relaxation are the same in the two systems. It is found that there are beat patterns in the interferograms with isooctane as the solvent. The beats are observed from a signal generated by the AOT/isooctane system even when there is no water in the system. A beat subtraction data processing procedure does a reasonable job of removing the distortions in the isooctane data, showing that the reverse micelle dynamics are the same within experimental error regardless of whether isooctane or carbon tetrachloride is used as the organic phase. Two time scales are observed in the vibrational echo data, ~1 and ~10 ps. The slower component contains a significant amount of the total inhomogeneous broadening. Physical arguments indicate that there is a much slower component of spectral diffusion that is too slow to observe within the experimental window, which is limited by the OD stretch vibrational lifetime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号