首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A series of metal complexes with three new tetradentate Schiff bases derived from benzoin and benzil withc-toluidine and benzil with diaminoethane have been prepared and characterised by physical and chemical methods. The modes of bonding of the ligands with the metal ions have been proposed. Electronic spectra and room temperature magnetic moment values suggest octahedral geometry for the CoII and NiII complexes, whereas the HgII and CdII complexes have tetrahedral geometry. The CuII complexes are square planar. Apart from the complexes of the Schiff bases derived from benzoin, all the other complexes have high molar conductance values suggesting them to be electrolytes. The complexes have been screened against some fungal pathogens.  相似文献   

2.
The reaction of cefalexine anions (Cpx?) with Mn2+, Co2+, Ni2+, Zn2+, and Cd2+ ions in aqueous solution at 20°C and ionic strength 0.1 was studied by pH-metry. In weakly alkaline medium, unstable complexes MCpx+ and M(OH)Cpx are formed, in which Cpx? behaves as a monodentate lidand coordinated through the amino group.  相似文献   

3.
Summary A series of metal complexes with new tridentate Schiff base derived from salicylaldehyde and furfuraldehyde with o-phenyldiamine have been prepared and characterised by physical and chemical methods. Electronic spectra, room temperature magnetic moment values, e.p.r. and X-ray photoelectron spectroscopy studies suggest an octahedral geometry for all the complexes, where low molar conductance values are in accord with their non-electrolytic nature. The thermal stability of the complexes is discussed and the ligand-to-metal bonding modes discussed.  相似文献   

4.
Summary The ON–NO donor Schiff base,N,N'-bis(benzoin)benzidine forms mono-, di- and tetra-nuclear complexes with metal cations. The cobalt(II) complex is a blue monomei of tetrahedral configuration. The nickel(II) and manganese(II) complexes are dimers and octahedral. A tetranuclear square planar chloro-bridged structure is proposed for the copper(II) complex. A dimeric pentacoordinated square pyramidal configuration is assigned to zinc(II) and a dinuclear tetrahedral stereochemistry is suggested for the cadmium(II) and mercury(II) complexes on the basis of analytical, conductance, magnetic susceptibility, molecular weight, i.r., electronic, d.t.g. and d.t.a. data.  相似文献   

5.
Contrary to the stereotype, Jacobsen's catalyst, chiral (salcy)Co(III)OAc adopts an unusual binding mode. The tetradentate {ONNO} ligand does not form a square plane but wraps cobalt in a cis-β fashion while acetate is chelating.  相似文献   

6.
A chiral Schiff base ligand (H2L) was obtained by condensing 2-hydroxynaphthalene-1-carbaldehyde with substituted (1R,2R)-(–)-diaminocyclohexane. Chiral Schiff base complexes [CuL], [NiL], [ZnL] and [MnLOH] have been synthesized and characterized by elemental analyses, M, i.r., u.v.–vis. and 1H-n.m.r. and magnetic measurements.  相似文献   

7.
8.
9.
Two mononuclear complexes with the Schiff base ligand 2-((2-(dimethylamino)ethylimino)methyl)phenol (HL), namely ZnL2 and CoL2(N3), have been synthesized and characterized using single-crystal X-ray diffraction and spectroscopy (IR, 1H NMR, UV–Vis, MS and EA). Both complexes are mononuclear. The coordination geometry in the Zn(II) complex is distorted square-pyramidal with a weak Zn···N interaction. The Co(III) complex is distorted octahedral, and the neutral molecule unit [CoIIIL2(N3)] is connected by C–H···N hydrogen bonds to form a one-dimensional infinite chain. The luminescence of the zinc compound has been investigated. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
《Polyhedron》1986,5(3):887-893
The electrochemistry and oxygenation kinetics of a series of Mn(II) complexes containing ligands derived from substituted salicylaldehyde and linear diamines have been studied. Complexes prepared from ethylenediamine produce cyclic voltammograms with a quasi-reversible Mn(II)-Mn(III) couple and oxygenation reactions which are first-order in both complex and O2, indicating formation of an Mn(III)-O2 species as the slow step in the reaction. The case of oxidation/oxygenation increases with increasing electron-donating ability of substituents on the salicyladehyde rings. Complexes with from six to 10 methylene groups in the diamine precursor produce highly irreversible voltammograms and oxygenation data which can not be interpreted in terms of a simple mechanism. Polymerization of the complexes is advanced as an explanation for these effects.  相似文献   

11.
Varying coordination modes of the Schiff base ligand H2L [5-methyl-1-H-pyrazole-3-carboxylic acid (1-pyridin-2-yl-ethylidene)-hydrazide] towards different metal centers are reported with the syntheses and characterization of four mononuclear Mn(II), Co(II), Cd(II) and Zn(II) complexes, [Mn(H2L)(H2O)2](ClO4)2(MeOH) (1), [Co(H2L)(NCS)2] (2), [Cd(H2L)(H2O)2](ClO4)2 (3) and [Zn(H2L)(H2O)2](ClO4)2 (4), and a binuclear Cu(II) complex, [Cu2(L)2](ClO4)2 (5). In the complexes 1-4 the neutral ligand serves as a 3N,2O donor where the pyridine ring N, two azomethine N and two carbohydrazine oxygen atoms are coordinatively active, leaving the pyrazole-N atoms inactive. In the case of complex 5, each ligand molecule behaves as a 4N,O donor utilizing the pyridine N, one azomethine N, the nitrogen atom proximal to the azomethine of the remaining pendant arm and one pyrazole-N atom to one metal center and the carbohydrazide oxygen atom to the second metal center. The complexes 1-4 are pentagonal bipyramidal in geometry. In each case, the ligand molecule spans the equatorial plane while the apical positions are occupied by water molecules in 1, 3 and 4 and two N bonded thiocyanate ions in 2. In complex 5, the two Cu(II) centers have almost square pyramidal geometry (τ = 0.05 for Cu1 and 0.013 for Cu2). Four N atoms from a ligand molecule form the basal plane and the carbohydrazide oxygen atom of a second ligand molecule sits in the apex of the square pyramid. All the complexes have been X-ray crystallographically characterized. The Zn(II) and Cd(II) complexes show considerable fluorescence emission while the remaining complexes and the ligand molecule are fluorescent silent.  相似文献   

12.
Summary The doubly bidentate ON-NO donor Schiff base, prepared from salicylaldehyde and 4,4-diaminodiphenylmethane forms complexes with 11 metal: ligand stoichiometric ratios. The cobalt(II), copper(II) and nickel(II) complexes exhibit subnormal magnetic moments. All the six complexes possess high melting points and are sparingly soluble in common organic solvents. A dinuclear octahedral structure is proposed for the cobalt(II), copper(II), nickel(II) and zinc(II) complexes and a dinuclear tetrahedral configuration is suggested for the cadmium(II) and mercury(II) complexes on the basis of analytical, conductance, magnetic susceptibility, molecular weight, i.r. and electronic spectral data.  相似文献   

13.
Salicylidene Schiff base chelates (R,R)‐(–)‐N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐cyclohexanediaminomanganese(III) chloride, (R,R)‐(–)‐N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐cyclohexanediaminocobalt(II), N,N′‐bis(salicylidene)‐ethylenediaminocobalt(II), N,N′‐bis(salicylidene)ethylenediaminonickel(II), and N,N′‐bis(salicylidene)ethylenediaminoaquacobalt(II), as well as (R,R)‐(–)‐N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)1,2‐cyclohexanediamine, were kinetically examined as antioxidants in the scavenging of tert‐butylperoxyl radical (tert‐butylOO?). Absolute rate constants and corresponding Arrhenius parameters were determined for reactions of tert‐butylOO? with these chelates in the temperature range ?52.5 to ?11°C. High reactivity of tert‐butylOO? with Mn(III) and Co(II) salicylidene Schiff base chelates was established using a kinetic electron paramagnetic resonance method. These salicylidene Schiff base chelates react in a 1:1 stoichiometric fashion with tert‐butylOO? without free radical formation. Ultraviolet–visible spectrophotometry and differential pulse voltammetry established that the rapid removal rate of tert‐butylOO? by these chelates is the result of Mn(III) oxidation to Mn(IV) and Co(II) oxidation to Co(III) by tert‐butylOO?. It is concluded that removal of alkylperoxyl radical by Mn(III) and Co(II) salicylidene Schiff base chelates may partially account for their biological activities. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 431–439, 2007  相似文献   

14.
Three new mononuclear Schiff-base complexes, namely [Mn(L)Cl] (1), [Ni(L)] (2), and [Cu(L)] (3), where L?=?anion of [N,N′-bis(2-hydroxybenzophenylidene)]propane-1,2-diamine, have been synthesized by reacting equimolar amounts of the respective metal chloride and the tetradentate Schiff base, H2L, in methanol. The complexes have been characterized by microanalytical, spectroscopic, single-crystal X-ray diffraction, and other physicochemical studies. Structural studies reveal that 1 adopts a distorted square-pyramidal geometry whereas 2 and 3 are isotypic with distorted square-planar geometries. The antibacterial activities of 13 along with their Schiff base have been tested against some Gram(+) and Gram(?) bacteria.  相似文献   

15.
Three new Schiff base complexes, namely [Mn(L)Cl] · H2O (1), [Co(L)Cl]2 · 2CH3COCH3 (2) and [Co(L)NCS]2 (3), where H2L = 2,2′-[propane-1,2-diylbis(nitriloeth-1-yl-1-ylidene)]diphenol, have been prepared and characterized. The syntheses of 1 and 2 have been achieved by reacting equimolar amounts of the respective metal chloride and the tetradentate Schiff base ligand (H2L). While the mononuclear Mn(III) complex 1 was obtained with MnCl2 in acetone medium, the same synthetic system yielded the binuclear Co(III) complex 2 in the presence of CoCl2. Dissolution of 1 and 2 followed by crystallization with ammonium thiocyanate in methanol yielded two isostructural phenoxo-bridged binuclear complexes, namely [Mn(L)NCS]2 (previously reported by us) and a new complex [Co(L)NCS]2 (3), respectively. All the complexes 13 have been characterized by microanalytical, spectroscopic, single crystal X-ray diffraction and other physicochemical studies. Structural studies reveal that 1 adopts a distorted tetragonal pyramidal geometry while 2 and 3 comprise dimeric Co(III) units with bridging phenolate oxygen atoms. All the complex units in 1–3 and the respective solvent molecules are held together by weak intermolecular H-bonding to constitute a supramolecular network in the solid state. The antibacterial activity of the complexes has been tested against some Gram(+) and Gram(?) bacteria.  相似文献   

16.
Oxygen absorption–desorption processes for square planar Mn(II), Co(II) and Mn(II) complexes of tetradentate Schiff base ligands in DMF and chloroform solvents were investigated. The tetradentate Schiff base ligands were obtained by condensation reaction of ethylenediamine with salcyldehyde, o-hydroxyacetophenone or acetylacetone in the molar ratio 1:2. The square planar complexes were prepared by the reaction of the Schiff base ligands with Mn(II) acetate, Co(II) nitrate and Ni(II) nitrate in dry ethanol under nitrogen atmosphere. The sorption processes were undertaken in the presence and absence of (pyridine) axial-base in 1:1 M ratio of (pyridine:metal(II) complexes). Complexes in DMF indicate significant oxygen affinity than in chloroform solvent. Cobalt(II) complexes showed significant sorption processes compared to Mn(II) and Ni(II) complexes. The presence of pyridine axial base clearly increases oxygen affinity.  相似文献   

17.
Reduction of 2-cyanopyridine by sodium in the presence of 3-piperidylthiosemicarbazide produces 2-pyridineformamide 3-piperidylthiosemicarbazone, HAmpip. Complexes with iron(III), cobalt(II,III) copper(II) and zinc(II) have been prepared and characterized by molar conductivities, magnetic susceptibilities and spectroscopic techniques. In addition, the crystal structures of HAmpip, [Fe(Ampip)2]ClO4, [Cu(HAmpip)Cl2]·CH3OH and [Zn(HAmpip)Br2]·C2H6SO have been determined. Coordination is via the pyridyl nitrogen, imine nitrogen and thiolato or thione sulfur when coordinating as the anionic or neutral ligand, respectively.  相似文献   

18.
Transition metal complexes [Fe(HL)2]Cl3 ? 1.5H2O (1), [Co(L)2] ? ClO4 ? H2O (2), Ni(HL)2(ClO4)2 ? 2H2O (3), Zn(HL)L ? BF4 ? 2H2O (4), and Cd(HL)2(ClO4)2 ? 2H2O (5), where HL = C7H9N5S, 2-acetylpyrazine thiosemicarbazone, have been synthesized. Complex 2 was characterized by elemental analysis, infrared spectra, mass spectra, and single-crystal X-ray diffraction. Preliminary in vitro screening showed that 1, 4, and 5 exhibit higher antitumor activity than 2 and 3 against K562 leucocythemia cancer cell line.  相似文献   

19.
The title compounds, bis­(di­methyl­form­amide)‐1κO,3κO‐bis{μ‐2,2′‐[2,2′‐di­methyl­propane‐1,3‐diyl­bis­(nitrilo­methylidyne)]­diphenolato}‐1κ4N,N′,O,O′:2κ2O,O′;2κ2O,O′:3κ4N,N′,O,O′‐di‐μ‐nitrito‐1:2κ2N:O;2:3κ2O:N‐dinickel(II)­cobalt(II), [CoNi2(NO2)2(C19H22N2O2)2(C3H7NO)2], (I), ‐copper(II), [CuNi2(NO2)2(C19H22N2O2)2(C3H7NO)2], (II), and ‐manganese(II), [MnNi2(NO2)2(C19H22N2O2)2(C3H7NO)2], (III), consist of centrosymmetric linear heterotrinuclear metal complexes. The three complexes are isostructural. There are three bridges across the Ni–M atom pairs (M is Co2+, Cu2+ or Mn2+) in each complex, involving two O atoms of a μ‐N,N′‐bis­(salicyl­idene)‐2,2′di­methyl‐1,3‐propane­diaminate ligand and an N—O moiety of a μ‐nitrito group. The coordination sphere around each metal atom, whether Co2+, Cu2+, Mn2+ or Ni2+, can be described as distorted octahedral. The Ni?M distances are 2.9988 (5) Å in (I), 2.9872 (5) Å in (II) and 3.0624 (8) Å in (III).  相似文献   

20.
Summary Coordination compounds having the general formula ML2Ox are described, with Ox = oxalato dianion; M = Ni, Co and Zn; 1 = water and imidazoles. The compounds are characterised by chemical analyses, i.r., far-i.r., Raman, ligand field and e.s.r. spectra. Magnetic susceptibility measurements at low temperatures indicate a polymeric structure of ant i-ferromagnetically coupled M2+ ions.All physical measurements agree with a polymeric structure built up by oxalate ions as tetradentate bridging ligands forming one-dimensional linear chains. Flach metal ion is coordinated by four oxalate oxygens and two donor atoms (N or O) in distorted octahedron. For M = Ni, the magnetic susceptibility measurements can be best described with the Heisenberg model including a zero-field splitting; for M = Co, the Ising model gives the best results. The exchange coupling constants, IJ1, vary from 9-13 cm–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号