首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
The modified gravity with 1/R term (R being the scalar curvature) and the Einstein-Hilbert term is studied by incorporating the phantom scalar field. A number of cosmological solutions are derived in the presence of the phantom field in the perfect fluid background. It is shown: the current inflation obtained in the modified gravity is affected by the existence of the phantom field.  相似文献   

2.
We look for a Brans-Dicke type generalization of Horava-Lifshitz gravity. It is shown that such a generalization is possible within the detailed balance condition. Classically, the resulting theory reduces in the low energy limit to the usual Brans-Dicke theory with a negative cosmological constant for certain values of parameters. We then consider homogeneous, isotropic cosmology and study the effects of the new terms appearing in the model.  相似文献   

3.
We study scalar–tensor theory, k-essence and modified gravity with Lagrange multiplier constraint which role is to reduce the number of degrees of freedom. Dark Energy cosmology of different types (ΛCDM, unified inflation with DE, smooth non-phantom/phantom transition epoch) is reconstructed in such models. It is demonstrated that presence of Lagrange multiplier simplifies the reconstruction scenario. It is shown that mathematical equivalence between scalar theory and F(R)F(R) gravity is broken due to presence of constraint. The cosmological evolution is defined by the second F2(R)F2(R) function dictated by the constraint. The convenient F(R)F(R) gravity sector is relevant for local tests. This opens the possibility to make originally non-realistic theory to be viable by adding the corresponding constraint. A general discussion on the role of Lagrange multipliers to make higher-derivative gravity canonical is developed.  相似文献   

4.
In this comment we indicate that in the Palatini formulation of R2 gravity, there will be no gravity-driven inflation and under some particular assumptions there will be a mild power-law inflation a t2.  相似文献   

5.
We develop a technique for the reconstruction of the potential for a scalar field in cosmological models based on induced gravity. The potentials reproducing cosmological evolutions driven by barotropic perfect fluids, a cosmological constant, a Chaplygin gas and a modified Chaplygin gas are constructed explicitly.  相似文献   

6.
Recently Rizzo studied the Lorentz Invariance Violation (LIV) in a brane scenario with one extra dimension where he found a non-zero mass for the four-dimensional graviton. This leads to the conclusion that five-dimensional models with LIV are not phenomenologically viable. In this work we re-examine the issue of Lorentz Invariance Violation in the context of higher-dimensional theories. We show that a six-dimensional geometry describing a string-like defect with a bulk-dependent cosmological constant can yield a massless 4D graviton, if we allow the cosmological constant variation along the bulk, and thus can provides a phenomenologically viable solution for the gauge hierarchy problem.  相似文献   

7.
Further consequences of a finite topological field theory for gravity based on the SL(5,R) gauge group are reported. After symmetry breaking, it induces four-dimensional Einstein spaces with a cosmological constant related to the tiny scale of the symmetry breaking. It is shown that not only a ‘background’ metric emerges from a Higgs-like mechanism, but also consistently the geodesic equation central to Einstein?s equivalence principle. In next order of the symmetry breaking scale, the induced torsion could even provoke a tiny Lorentz violation.  相似文献   

8.
K P Sinha 《Pramana》1984,23(2):205-214
A review of some recent papers on gauge theories of weak and strong gravity is presented. For weak gravity, SL(2, C) gauge theory along with tetrad formulation is described which yields massless spin-2 gauge fields (quanta gravitons). Next a unified SL(2n,C) model is discussed along with Higgs fields. Its internal symmetry is SU(n). The free field solutions after symmetry breaking yield massless spin-1 (photons) and spin-2 (gravitons) gauge fields and also massive spin-1 and spin-2 bosons. The massive spin-2 gauge fields are responsible for short range superstrong gravity. Higgs-fermion interaction can lead to baryon and lepton number non-conservation. The relationship of strong gravity with other forces is also briefly considered.  相似文献   

9.
Macroscopic and microscopic long-distance bidirectional transfer depends on connections between entrances and exits of various transport mediums. Persuaded by the associations, we introduce a small system module of Totally Asymmetric Simple Exclusion Process including oppositely directed species of particles moving on two parallel channels with constrained entrances. The dynamical rules which characterize the system obey symmetry between the two species and are identical for both the channels. The model displays a rich steady-state behavior, including symmetry breaking phenomenon. The phase diagram is analyzed theoretically within the mean-field approximation and substantiated with Monte Carlo simulations. Relevant mean-field calculations are also presented. We further compared the phase segregation with those observed in previous works, and it is examined that the structure of phase separation in proposed model is distinguished from earlier ones. Interestingly, for phases with broken symmetry, symmetry with respect to channels has been observed as the distinct particles behave differently while the similar type of particles exhibits the same conduct in the system. For symmetric phases, significant properties including currents and densities in the channels are identical for both types of particles. The effect of symmetry breaking occurrence on the Monte Carlo simulation results has also been examined based on particle density histograms. Finally, phase properties of the system having strong size dependency have been explored based on simulations findings.  相似文献   

10.
The infinite derivative theory of gravity is a generalization of Einstein gravity with many interesting properties,but the black hole solutions in this theory are still not fully understood.In the paper,we concentrate on studying the charged black holes in such a theory.Adding the electromagnetic field part to the effective action,we show how the black hole solutions around the Reissner-Nordstrom metric can be solved perturbatively and iteratively.We further calculate the corresponding temperature,entropy and electrostatic potential of the black holes and verify the first law of thermodynamics.  相似文献   

11.
Group contraction plays a relevant rôle in spontaneously broken symmetry theories. Its physical meaning in connection with Bose condensation and the origin of macroscopic quantum systems is discussed.  相似文献   

12.
Spherical reduction of generic four-dimensional theories is revisited. Three different notions of “spherical symmetry” are defined. The following sectors are investigated: Einstein-Cartan theory, spinors, (non-)abelian gauge fields and scalar fields. In each sector a different formalism seems to be most convenient: the Cartan formulation of gravity works best in the purely gravitational sector, the Einstein formulation is convenient for the Yang-Mills sector and for reducing scalar fields, and the Newman-Penrose formalism seems to be the most transparent one in the fermionic sector. Combining them the spherically reduced Standard Model of particle physics together with the usually omitted gravity part can be presented as a two-dimensional (dilaton gravity) theory.  相似文献   

13.
Precision clocks and interferometers in space can test relativistic gravity with extremely high sensitivity. Yet, only a single such test has been performed, namely the celebrated flight of a hydrogen maser in a sub-orbital trajectory in 1976 (GP-A mission). This paper suggests some of the obstacles to space flight of precision instruments, and describes how the emergence of new technology might offer a pathway for removing those obstacles. A brief review of emerging technologies is made, and new mission concepts based on them are described. Some of the technologies that can impact more tests of relativistic gravity in space at a more distant future are also described.  相似文献   

14.
The fundamental symmetry of Einstein’s theory of gravity is Lorentz-invariance which leads to a well defined energy-momentum tensor. This is also true for Maxwell’s theory of electromagnetism which has an additional symmetry due to its spin one, restmass zero character. Similarly, the spin two, restmass zero character of the gravitational field leads to an additional gauge symmetry that happens to be isomorphic to the concept of general covariance. The gauge-covariant energy-momentum tensor for gravitational interactions vanishes identically.  相似文献   

15.
We consider various models of three-dimensional gravity with torsion or nonmetricity (metric affine gravity), and show that they can be written as Chern–Simons theories with suitable gauge groups. Using the groups ISO(2,1), SL(2,C) and SL(2,R)×SL(2,R), and the fact that they admit two independent coupling constants, we obtain the Mielke–Baekler model for zero, positive and negative effective cosmological constant respectively. Choosing SO(3,2) as the gauge group, one gets a generalization of conformal gravity that has zero torsion and only the trace part of the nonmetricity. This characterizes a Weyl structure. Finally, we present a new topological model of metric affine gravity in three dimensions arising from an SL(4,R) Chern–Simons theory.  相似文献   

16.
We investigate the viability of f(R) theories in the framework of the Palatini approach as solutions to the problem of the observed accelerated expansion of the universe. Two physically motivated popular choices for f(R) are considered,: power law, f(R) = β R n , and logarithmic, f(R) = α ln R. Under the Palatini approach, both Lagrangians give rise to cosmological models comprising only standard matter and undergoing a present phase of accelerated expansion. We use the Hubble diagram of type Ia Supernovae and the data on the gas mass fraction in relaxed galaxy clusters to see whether these models are able to reproduce what is observed and to constrain their parameters. It turns out that they are indeed able to fit the data with values of the Hubble constant and of the matter density parameter in agreement with some model independent estimates, but the today deceleration parameter is higher than what is measured in the concordance ΛCDM model.  相似文献   

17.
Neural activity patterns related to behavior occur at many scales in time and space from the atomic and molecular to the whole brain. Patterns form through interactions in both directions, so that the impact of transmitter molecule release can be analyzed to larger scales through synapses, dendrites, neurons, populations and brain systems to behavior, and control of that release can be described step-wise through transforms to smaller scales. Here we explore the feasibility of interpreting neurophysiological data in the context of many-body physics by using tools that physicists have devised to analyze comparable hierarchies in other fields of science. We focus on a mesoscopic level that offers a multi-step pathway between the microscopic functions of neurons and the macroscopic functions of brain systems revealed by hemodynamic imaging. We use electroencephalographic (EEG) records collected from high-density electrode arrays fixed on the epidural surfaces of primary sensory and limbic areas in rabbits and cats trained to discriminate conditioned stimuli (CS) in the various modalities. High temporal resolution of EEG signals with the Hilbert transform gives evidence for diverse intermittent spatial patterns of amplitude (AM) and phase modulations (PM) of carrier waves that repeatedly re-synchronize in the beta and gamma ranges in very short time lags over very long distances. The dominant mechanism for neural interactions by axodendritic synaptic transmission should impose distance-dependent delays on the EEG oscillations owing to finite propagation velocities and sequential synaptic delays. It does not. EEGs show evidence for anomalous dispersion: neural populations have a low velocity range of information and energy transfers, and a high velocity range of the spread of phase transitions. This distinction labels the phenomenon but does not explain it. In this report we analyze these phenomena using concepts of energy dissipation, the maintenance by cortex of multiple ground states corresponding to AM patterns, and the exclusive selection by spontaneous breakdown of symmetry (SBS) of single states in sequential phase transitions.  相似文献   

18.
为了找出适用于再循环重力供液蒸发器管内强制对流沸腾换热系数的关系式,通过对以R404A为制冷剂的重力供液实验台的研究,编程计算出J.Chawla关系式及Shah关联式对重力供液沸腾换热系数进行预测值。与实验结果比较可知:J.Chawla关系式在较低温度下较接近于实验值,Shah关联式在较高的温度下可以对实验值进行预测,两种关系式相结合的方法就可以较好对重力供液蒸发器管内沸腾换热进行预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号