首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The structure and reactivity of bimetallic electrodes obtained by spontaneous deposition of Ru and Os on Au(111) single-crystal surfaces are studied. In situ electrochemical STM and cyclic voltammetry are used to characterize a wide range of surface morphologies thus produced. The STM results on Ru/Au(111) demonstrate a pronounced step decoration, while a random distribution of Ru nuclei, quite uniform in size, occurs on terraces. Osmium deposits show a slight preference for deposition on steps, but it also occurs readily on terraces. However, many of the Os islands grow into multilayer heights. The coverage of the Au(111) by the deposited Ru or Os islands for a particular solution concentration depends on the deposition time. Nanostructures of Ru and Os are tested for catalytic behavior and correlated to CO oxidation activity as measured by CO stripping voltammetry. Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 11, pp. 1385–1392. Based on the report delivered at the 8th International Frumkin Symposium “Kinetics of the Electrode Processes,” October 18–22, 2005, Moscow. The text was submitted by the authors in English.  相似文献   

2.
We provide an electrochemical and structural characterization by in situ STM of Au(111)/Os electrodes prepared by spontaneous deposition of Os on Au(111). Surfaces with Os coverage values up to the saturation coverage were examined, from 10%. Using comparisons to previous work on Au(111)/Ru, Pt(111)/Ru, and Pt(111)/Os, we find that we may now generalize that Os deposits spontaneously faster than Ru and has a greater tendency to form 3-D structures. Additionally, the Au(111) substrate shows preferential step and near-step decoration in both cases, although it is less pronounced for Os than Ru. We also investigated the incremental dissolution of the Os from Au(111), to better understand electrochemical dissolution processes in general and to better control the Os deposit structure. The application of controlled electrochemical treatments (cyclic voltammetry up to increasingly positive values) significantly increased the dispersion of the Os deposit by generating smaller, more widely spaced islands. Upon voltammetry up to 0.75 V, the Au(111)/Os surface showed evidence of alloying and the formation of 3-D structures suggestive of strong Os-Os (oxidized) species interactions. The CO stripping results show the Au(111)/Os is not particularly effective for this reaction, but such results help to complete the overall picture of NM-NM catalytic combinations. Although the Au(111)/Os system itself is not catalytically active, the electrochemical manipulation of the deposit structure demonstrated here may be applied to other noble metal/noble metal (NM/NM) catalytic substrates to find optimal deposit morphologies.  相似文献   

3.
Catalytic activity of the Pt(111)/Os surface toward methanol electrooxidation was optimized by exploring a wide range of Os coverage. Various methods of surface analyses were used, including electroanalytical, STM, and XPS methods. The Pt(111) surface was decorated with nanosized Os islands by spontaneous deposition, and the Os coverage was controlled by changing the exposure time to the Os-containing electrolyte. The structure of Os deposits on Pt(111) was characterized and quantified by in situ STM and stripping voltammetry. We found that the optimal Os surface coverage of Pt(111) for methanol electrooxidation was 0.7 +/- 0.1 ML, close to 1.0 +/- 0.1 Os packing density. Apparently, the high osmium coverage Pt(111)/Os surface provides more of the necessary oxygen-containing species (e.g., Os-OH) for effective methanol electrooxidation than the Pt(111)/Os surfaces with lower Os coverage (vs e.g., Ru-OH). Supporting evidence for this conjecture comes from the CO electrooxidation data, which show that the onset potential for CO stripping is lowered from 0.53 to 0.45 V when the Os coverage is increased from 0.2 to 0.7 ML. However, the activity of Pt(111)/Os for methanol electrooxidation decreases when the Os coverage is higher than 0.7 +/- 0.1 ML, indicating that Pt sites uncovered by Os are necessary for sustaining significant methanol oxidation rates. Furthermore, osmium is inactive for methanol electrooxidation when the platinum substrate is absent: Os deposits on Au(111), a bulk Os ingot, and thick films of electrodeposited Os on Pt(111), all compare poorly to Pt(111)/Os. We conclude that a bifunctional mechanism applies to the methanol electrooxidation similarly to Pt(111)/Ru, although with fewer available Pt sites. Finally, the potential window for methanol electrooxidation on Pt(111)/Os was observed to shift positively versus Pt(111)/Ru. Because of the difference in the Os and Ru oxophilicity under electrochemical conditions, the Os deposit provides fewer oxygen-containing species, at least below 0.5 V vs RHE. Both higher coverage of Os than Ru and the higher potentials are required to provide a sufficient number of active oxygen-containing species for the effective removal of the site-blocking CO from the catalyst surface when the methanol electrooxidation process occurs.  相似文献   

4.
Electrochemical Ru deposits on Pt(111) surfaces are investigated by STM; the images of the Ru-modified surfaces show islands of monoatomic height and between 2–5 nm in diameter. The density of islands on the surface depends on the Ru deposition potential (observed by STM and XRSD) and the cyclic voltammograms indicate an increasing Ru coverage for lower deposition potentials. The Ru surface coverage is determined by ex-situ XPS measurements and a linear dependence of the Ru coverage on the deposition potential is demonstrated. IR spectra of a monolayer of adsorbed CO on the Ru-modified Pt(111) surfaces show distinct bands for CO adsorbed on Pt and on Ru. For the integrated band intensity of the CO/Ru vibration a linear dependence on deposition potential is found indicating that lateral dipole interactions between CO adsorbed on Pt and Ru are unimportant and that the CO coverage on the Ru islands is constant for the Ru coverages investigated. The possibility of using adsorbate vibrational bands for the determination of the coverage of deposits is discussed. Received: 24 June 1996 / Revised: 6 December 1996 / Accepted: 12 December 1996  相似文献   

5.
The CO electro-oxidation reaction was studied on platinum-modified Rh(111) electrodes in 0.5 M H2SO4 using cyclic voltammetry and chronoamperometry. The Pt-Rh(111) electrodes were generated during voltammetric cycles at 50 mV s(-1) in a 30 microM H2PtCl6 and 0.5 M H2SO4 solution. Surfaces generated by n deposition cycles were investigated (Ptn-Rh(111) with n=2, 4, 6, 8, 10, and 16). The blank cyclic voltammograms of these surfaces are characterized by a pronounced sharpening of the hydrogen/(bi)sulfate adsorption/desorption peaks, typical for Rh(111), and the appearance of contributions between 0.1 and 0.4 V, which were ascribed to hydrogen/(bi)sulfate adsorption/desorption on the deposited platinum. At higher potentials, the surface oxidation of Rh(111) is enhanced by the presence of platinum. The structure of the Pt-modified electrodes was investigated by STM imaging. At low Pt coverages (Pt2-Rh(111)), monoatomically high islands are formed, which grow three dimensionally as the number of deposition cycles increases. After eight cycles, the monolayer islands have grown in diameter and range from mono- to multiatomic height. At even higher Pt coverage (Pt16-Rh(111)), the islands grow to particles of approx. 10 nm in diameter, which are 5-6 atoms high. The CO stripping voltammetry on these surfaces is characterized by two peaks: A low-potential, structure-insensitive peak, ascribed to CO reacting at the platinum monolayer islands, whose onset is shifted 150, 250, and 100 mV negatively with respect to pure Rh(111), Pt(111), and polycrystalline Pt, respectively, indicating the enhanced CO electro-oxidation properties of the Pt overlayer system. A peak at higher potentials displays strong structure sensitivity (particle-size effect) and was ascribed to CO reacting on the islands of multiatomic height. Current-time transients recorded on the surface with the highest amount of monolayer islands (Pt4-Rh(111)) also indicate enhanced CO-oxidation kinetics. Comparison of the Pt4-Rh(111) current-time transients recorded at 0.635, 0.675, and 0.750 V versus RHE (reversible hydrogen electrode) with those of pure Rh(111) and Pt(111) shows greatly reduced reaction times. A Cottrellian decay at long times indicates surface-diffusion-limited CO oxidation on the bare Rh(111) surface, while the peak visible at short times is indicative of CO reacting at the monolayer platinum islands. The results presented here show that, as indicated by density functional theory (DFT) calculations, the CO-adlayer oxidation for this system is enhanced compared to both pure Rh and Pt.  相似文献   

6.
Ruthenium and osmium were deposited in submonolayer amounts on Pt(111) single crystal surfaces using the previously reported ‘spontaneous deposition’ procedure [Chrzanowski et al., Langmuir, 13 (1997) 5974]. Such surfaces were first explored using ex situ scanning tunneling microscopy (STM) to image the deposition characteristics of ruthenium and osmium islands on Pt(111). It was found that, using the spontaneous deposition procedure, a maximum coverage of 0.20 ML ruthenium is formed on the surface after 120 s of exposure to a RuCl3 solution in 0.1 M HClO4. A homogeneous deposition on the Pt(111) surface was found, with no observed preferential deposition on step edges or surface defect sites. In contrast, in the spontaneous deposition of osmium, osmium clusters form preferentially at, though not limited to, surface defect sites and step edges. Osmium island deposition occurs at a greater rate than ruthenium on Pt(111), and possible explanations are presented. Methanol activity on the Pt(111)/Ru and Pt(111)/Os surfaces is also studied, using the coverage values determined to yield the highest activity for methanol electro-oxidation (0.20 ML coverage for Ru and 0.15 ML for Os). At potentials more negative than 0.40 V vs. RHE, the Pt(111)/Ru surface yields a higher surface activity than Pt(111)/Os. However, at potentials more positive than 0.04 V, Pt(111)/Os exhibits demonstrably higher surface activity. The relevance of this data is discussed and future avenues of interest are indicated.  相似文献   

7.
Koper TM  Lebedeva NP  Hermse CG 《Faraday discussions》2002,(121):301-11; discussion 331-64
We consider theoretical models for CO monolayer oxidation on stepped Pt single-crystal electrodes and Ru-modified Pt(111) electrodes. For both systems, our aim is to assess the importance of CO surface diffusion in reproducing the experimental chronoamperometry or voltammetry. By comparing the simulations with the experimental chronoamperometric transients for CO oxidation on a series of stepped Pt surfaces, it was concluded that mixing of CO on the Pt(111) terrace is good, implying rapid diffusion (N. P. Lebedeva, M. T. M. Koper, J. M. Feliu and R. A. van Santen, J. Phys. Chem. B, submitted). We discuss here a more detailed model in which the CO adsorbed on steps is converted into CO adsorbed on terraces as the oxygen-containing species occupy the steps (as observed experimentally on stepped Pt in UHV), followed by a subsequent oxidation of the latter, to reproduce the observed chronoamperometry on stepped surfaces with a higher step density. On Ru-modified Pt(111), the experimentally observed splitting of the CO stripping voltammetry into two stripping peaks, may suggest a slow diffusion of CO on Pt(111). This apparent contradiction with the conclusions of the experiments on stepped surfaces, is resolved by assuming a weaker CO binding to a Pt atom which has Ru neighbors than to "bulk" Pt(111), in agreement with recent quantum-chemical calculations. This makes the effective diffusion from the uncovered Pt(111) surface to the perimeter of the Ru islands, which are considered to be the active sites in CO oxidation electrocatalysis on PtRu surfaces, very slow. Different models for the reaction are considered, and discussed in terms of their ability to explain experimental observations.  相似文献   

8.
The variation in CO adsorption structures during the preoxidation of CO on Os-modified Pt(111) (Pt(111)/Os) was investigated using cyclic voltammetry and electrochemical scanning tunneling microscopy. The spontaneous deposition of Os on Pt(111) resulted in randomly scattered islands with a coverage range of 0.13-0.54. During preoxidation on Pt(111)/Os, a phase transition from (2 × 2)-α to (√19 × √19) via the transient structures of (2 × 2)-β and (1 × 1) took place as on unmodified Pt(111). As the amount of Os increased, however, the transient structures of (2 × 2)-β and (1 × 1) appeared at lower potentials with higher populations. When the population of the transient structures was greater than 50%, an oxidative CO stripping process took place to the structure of (√19 × √19), completing the preoxidation. These observations strongly support the idea that the presence of Os increases the mobility of adsorbed CO by electronic modification of the Pt(111) surface (electronic effect). In addition, the results obtained with Pt(111)/Os were compared with those of Pt(111)/Ru.  相似文献   

9.
In-situ scanning tunneling microscopy (STM) coupled with cyclic voltammetry was used to examine the adsorption of carbon monoxide (CO) molecules on an ordered Au(111) electrode in 0.1 M HClO4. Molecular resolution STM revealed the formation of several commensurate CO adlattices, but the (9 x radical 3) structure eventually prevailed with time. The CO adlayer was completely electrooxidized to CO2 at 0.9 V versus RHE in CO-free 0.1 M HClO(4), as indicated by a broad and irreversible anodic peak which appeared at this potential in a positive potential sweep from 0.05 to 1.6 V. A maximal coverage of 0.3 was estimated for CO admolecules from the amount of charge involved in this feature. Real-time in-situ STM imaging allowed direct visualization of the adsorption process of CO on Au(111) at 0.1 V, showing the lifting of (radical 3 x 22) reconstruction of Au(111) and the formation of ordered CO adlattices. The (9 x radical 3) structure observed in CO-saturated perchloric acid has a coverage of 0.28, which is approximately equal to that determined from coulometry. Switching the potential from 0.1 to -0.1 V restored the reconstructed Au(111) with no change in the (9 x radical 3)-CO adlattice. However, the reconstructed Au(111) featured a pairwise corrugation pattern with two nearest pairs separated by 74 +/- 1 A, corresponding to a 14% increase from the ideal value of 65.6 A known for the ( radical 3 x 22) reconstruction. Molecular resolution STM further revealed that protrusions resulting from CO admolecules in the (9 x radical 3) structure exhibited distinctly different corrugation heights, suggesting that the CO molecules resided at different sites on Au(111). This ordered structure predominated in the potential range between 0.1 and 0.7 V; however, it was converted into new structures of (7 x radical 7) and ( radical 43 x 2 radical 13) on the unreconstructed Au(111) when the potential was held at 0.8 V for ca. 60 min. The coverage of CO adlayer decreased accordingly from 0.28 to 0.13 before it was completely removed from the Au(111) surface at more positive potentials.  相似文献   

10.
The electrodeposition of Zn on Au(111) was investigated with cyclic voltammetry (CV) and in situ scanning tunneling microscopy (STM) in the air and water stable ionic liquid 1-ethyl-3-methylimidazolium trifluoromethylsulfonate ([EMIm]TfO) with a Zn(TfO)2 concentration of 0.2 M. It has been found that the structure [EMIm]TfO/Au(111) is very complex. Furthermore, the addition of Zn(TfO)2 changes the interfacial structure significantly. The first STM-probed Zn islands appear at +0.3 V, and their growth leads to the formation of a thin zinc layer. A bulk deposition of Zn is obtained with in situ STM at ?0.1 V. Furthermore, in situ STM reveals that the deposition of Zn is accompanied by the formation of Au-Zn surface alloys.  相似文献   

11.
The electrochemical oxidation of a CO adlayer on Pt[n(111)x(111)] electrodes, with n = 30, 10, and 5, Pt(111), Pt(110) as well as a Pt(553) electrode (with steps of (100) orientation) in alkaline solution (0.1 M NaOH) has been studied using stripping voltammetry. On these electrodes, it is possible to distinguish CO oxidation at four different active oxidation sites on the surface, i.e. sites with (111), (110) and (100) orientation, and kink sites. The least active site for CO oxidation is the (111) terrace site. Steps sites are more active than the (111) terrace sites, the (110) site oxidizing CO at lower potential than the (100) site. The CO oxidation feature with the lowest overpotential (oxidation potential as low as 0.35 V vs. RHE) was ascribed to oxidation of CO at kink sites. The amount of CO oxidized at the active step or kink sites vs. the amount of CO oxidized at the (111) terrace sites depends on the concentration of the active sites and the time given for the terrace-bound CO to reach the active site. By performing CO stripping on the stepped surfaces at different scan rates, the role of CO surface diffusion is probed. The possible role of electronic effects in explaining the unusual activity and dynamics of CO adlayer oxidation in alkaline solution is discussed.  相似文献   

12.
The behaviour of benzyl mercaptan self-assembled monolayers on Au(111) in sulfuric acid solution was studied using cyclic voltammetry and in situ scanning tunnelling microscopy. Modification of the Au(111) surface in an ethanolic solution of benzyl mercaptan leads to a disordered monolayer. However, by partial reductive desorption a striped c (15 x sqrt [3]) and a (2 x sqrt [3]) structure were obtained. The disordered benzyl mercaptan film was also used for the study of copper deposition. At -0.02 V versus SCE, that is in the underpotential deposition region, monoatomic high islands appear on the surface. Bulk deposition of copper starts at -0.08 V versus SCE with the growth of dendrites underneath the thiol film. At higher overpotentials, the growth of three-dimensional copper clusters commences.  相似文献   

13.
The competition between pathways that lead to adsorbed CO and CO2 during the electrochemical oxidation of 1.0 M methanol in 0.1 M HClO4 on two bulk Pt–Ru alloys (10 at.% Ru (XRu≈0.1) and 90 at.% Ru (XRu≈0.9)) was investigated for temperatures in the range of 25–80°C. On the high Ru content alloy studied (XRu≈0.9), the dissociative chemisorption of methanol was inhibited below 70°C; the faradaic current for methanol oxidation was low, and only small quantities of adsorbed CO and CO2 were detected with infrared spectroscopy between 0.2–0.8 V (vs. RHE). At 80°C, strong infrared bands from CO2 and adsorbed, atop coordinated CO were observed over the potential ranges of 0.4–0.8 V and 0.2–0.8 V, respectively. The infrared measurements are consistent with the observation that bulk, high Ru content alloy electrodes appear passivated toward methanol oxidation below 70°C. On the low Ru content alloy studied (XRu≈0.1), the methanol surface chemistry was similar to that of pure, polycrystalline Pt, but the electrode was more poison resistant than Pt. For both alloys, the persistence of strong adsorbed CO bands and rapid CO2 production between 0.4–0.8 V suggests CO functions as a reactive species with high steady-state coverages at these potentials.  相似文献   

14.
In order to examine whether monolayer or sub-monolayer extents of surface oxidation can be realized experimentally at Ni prior to onset of bulk-phase oxide formation (as they can for example at Pt, Ru or Au already at room temperature), cyclic voltammetric experiments down to low temperature (−90° C) have been conducted on Ni in solutions of NaOH in 80 mol% methanol with water. The cyclic voltammograms for the first stage of Ni oxidation to α-Ni(OH)2, and its reduction, show that extents of surface oxidation down to an equivalent monolayer, or less, of Ni(OH)2 can be realized at sufficiently low temperatures. However, even at these low levels of oxidation of the metal, irreversibility between the processes of Ni oxide formation and reduction is maintained in a way characteristic of the behavior of three-dimensional oxide films. It therefore appears that even at low levels of surface oxidation of Ni which are attainable at low temperature, the oxidation mechanism involves nucleation and growth of the oxide in islands rather than an initial surface-chemical process of OH or O array formation, as at Pt or Au. However, no indications of a dissolution-and precipitation type of oxide formation process, which would involve mass-transport in solution, are given by the present results obtained from experiments in dilute alkali at low temperatures, and at the rotating Ni disc electrode.  相似文献   

15.
In-situ scanning tunneling microscopy (STM), cyclic voltammetry (CV), and infrared reflection-adsorption spectroscopy (IRRAS) have been used to examine the electrodeposition of gold onto Pt(111) electrodes modified with benzenethiol (BT) and benzene-1,2-dithiol (BDT) in 0.1 M HClO4 containing 10 microM HAuCl4. Both BT and BDT were attached to Pt(111) via one sulfur headgroup. STM and IRRAS results indicated that the other SH group of BDT was pendant in the electrolyte. Both BT and BDT formed (2 x 2) structures at the coverage of 0.25, and they were transformed into (square root(3) x square root(3))R30 degrees as the coverage was raised to 0.33. These two organic surface modifiers resulted in 3D and 2D gold islands at BT- and BDT-coated Pt(111) electrodes, respectively. The pendant SH group of BDT could interact specifically with gold adspecies to immobilize gold adatoms on the Pt(111) substrate, which yields a 2D growth of gold deposition. Molecular resolution STM revealed an ordered array of (6 x 2 square root(13)) after a full monolayer of gold was plated on the BDT/Pt(111) electrode. Since BDT was strongly adsorbed on Pt(111), gold adatoms only occupied free sites between BDT admolecules on Pt(111). This is supported by a stripping voltammetric analysis, which reveals no reductive desorption of BDT admolecules at a gold-deposited BDT/Pt(111) electrode. It seems that the BDT adlayer acted as the template for gold deposit on Pt(111). In contrast, a BT adlayer yielded 3D gold deposit on Pt(111). This study demonstrates unambiguously that organic surface modifiers could contribute greatly to the electrodeposition of metal adatoms.  相似文献   

16.
Among all the transition metal sulfides, ruthenium sulfide (RuS2) has been shown to be the most active catalyst for the hydrodesulfuriztion processes. Using X-ray photoemission spectroscopy (XPS) and scanning tunneling microscopy (STM), we have found a novel approach for the preparation of RuS2 nanoislands on an Au(111) substrate. Chemical vapor deposition of Ru3(CO)12 leads to metallic Ru nanoclusters on the gold substrate. Although sulfidation has not been observed on extended Ru (0001) surface, Ru nanoclusters react with S2, forming ruthenium sulfide. While the majority of the sulfide is in the form of nanosized clusters that aggregate into clustered islands, a small fraction of the sulfide is seen as flat islands. When Ru3(CO)12 was deposited on a sulfur-modified gold substrate at elevated temperature, flat islands of ruthenium sulfide are formed exclusively. The flat islands are single-layer RuS2 nanocrystals with a (111) surface termination which exhibits an ordered array of sulfur vacancies. On such RuS2 (111) surfaces, excess sulfur is stable at low temperature and induces surface reconstruction, and desorbs at high temperature. The RuS2(111)/Au system provides an excellent model system for ruthenium sulfide catalysts.  相似文献   

17.
Direct experimental evidence that can be unambiguously attributed to the need of an ensemble of a minimum number of neighboring Pt atoms for methanol electro-oxidation has been observed for the first time. This was realized by a Pt coverage-dependent investigation of methanol and CO electro-oxidation on Pt sites generated via spontaneous deposition onto both Au and Ru surfaces. CO stripping voltammograms also show clear evidence of a substantially strengthened CO-Pt bonding for submonolayer Pt deposited on the Au substrate over a range of ca. 0.22 to 0.77, which is in qualitative agreement with the theoretical prediction based on the Hammer-N?rskov d-band center model. However, the degree of the bond strengthening depends on the Pt coverage, being stronger for lower coverage. Additionally, evidence of an Ostwald ripening process for Pt islands formation has also been observed.  相似文献   

18.
The methanol oxidation reaction(MOR) is the limiting half-reaction in direct methanol fuel cell(DMFC).Although Pt is the most active single-metal electrocatalyst for MOR,it is hampered by high cost and CO poisoning.Constructing a Pt or Ru monolayer on a second metal substrate by means of galvanic replacement of underpotentially deposited(UPD) Cu monolayer has been shown as an efficient catalyst design strategy for the electrocatalysis of MOR because of the presumed 100% utilization of atoms and resistance to CO poisoning.Herein,we prepared one-dimensional surface-alloyed electrocatalyst from predominantly(111) faceted Au nanowires with high aspect ratio as the substrate of under-potential deposition.The electrocatalyst comprises a core of the Au nanowire and a shell of catalytically active Pt coated by Ru.Coverage-dependent electro-catalytic activity and stability is demonstrated on the Pt/Ru submonolayers on Au wires for MOR.Among all these catalysts,Au@Pt_(ML)@Ru_(ML) exhibits the best electrocatalytic activity and poisoning tolerance to CO.This presents a viable method for the rational catalyst design for achieving high noble-metal utilization efficiency and high catalytic performance.  相似文献   

19.
The microcontamination process of silver onto p-type crystalline silicon(111) in a solution of 0.01 mol L−1 AgNO3 at room temperature was investigated by studying the anodic stripping behavior using cyclic voltammetry (CV). This paper shows that the rate of Ag deposition is rapid and that deposition is almost fully accomplished within 1 s. Calculating the surface coverage (Γ) for 1 s, 10 min, or 1 h immersion based on the CV curves demonstrated that the silver layer was only a monolayer.  相似文献   

20.
A highly catalytic system for sugar oxidation in alkaline media is presented, for the first time, in which glucose oxidation takes place at ca. −0.44 V (vs. Ag|AgCl). Modification of Au(1 1 1) single crystal surface by under potential deposition (UPD) was carried out for a variety of metals and catalytic effect for sugar oxidation has been studied in 0.1 M NaOH. UPD of Ag ad-atoms on Au electrodes were of the best catalytic activity compared to other metals (Cu, Co, Ru, Cd, Ir, and Pt, etc.). For aldose type monosaccharide studied (glucose, mannose and xylose) as well as for aldose-containing disaccharides (maltose and lactose), one significant oxidation peak was obtained, however, no significant oxidation current was observed for disaccharides like sucrose. Gluconolactone and mannolactone gave no oxidation current at negative potentials at which glucose was oxidized, indicating no more than two-electron oxidation took place. With Ag ad-atoms coverage of ca. 0.3 monolayer leads to a positive catalytic effect expressed through a negative shift of ca. 0.14 V (glucose case) on the oxidation potential and a slight increase in peak current. At the Au(1 0 0) surface similar results to those at an Au(1 1 1) electrode were also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号