首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Attapulgite (ATP), a fibrous nanoclay mineral, was adopted as an additive in this study to improve the sedimentation problem of soft magnetic carbonyl iron (CI)-based magnetorheological (MR) fluids caused by the density mismatch between the CI particles and medium oil. The MR characteristics of the two MR fluid systems with and without ATP were measured and compared using a rotational rheometer under different magnetic field strengths. Scanning electron microscopy indicated that ATP filled the interspaces among the CI particles, explaining the improved dispersion stability of the MR fluid based on the Turbiscan sedimentation measurements. Despite the slight decrease in MR characteristics, the MR fluid with the additive exhibited the typical MR performance of an increase in shear stress in an applied magnetic field.  相似文献   

2.
In this article distribution of nanoclay between the two phases of a new class of dynamically vulcanized TPV based on POE/EVA(Polyethylene octene elastomer/ethylene vinyl acetate copolymer) elastomers prepared with various amounts of organoclay (0.5, 1 and 3 wt%) using dicumyl peroxide (DCP) as vulcanizing agent by reactive melt blending process has been studied. Different specimens of POE and POE/EVA blend with and without clay were prepared. The effects of organoclay on mechanical properties, swelling kinetics, crystallinity, vulcanization characteristics, dynamic mechanical behaviour, electrical properties and morphology were studied. DMA and morphological analysis revealed the formation of a Thermoplastic vulcanizate. XRD analysis showed decrease in crystallinity on addition of EVA in POE matrix. However, morphological observation of the fractured surface suggested that the smaller EVA domain was quite uniformly distributed into the POE phase and the clay phase was predominantly dispersed in the EVA phase of the TPVs and 0.5% clay mainly improved the mechanical properties and elongation of the blends. Swelling characteristics, electrical properties and storage modulus were also improved with the clay in case of the blend containing higher EVA content which further supports the fact that nanoclay was preferably distributed in the more polar EVA phase.  相似文献   

3.
We investigate the structure and dynamics of charge-stabilized CoFe(2)O(4)-SiO(2) core-shell magnetic nanoparticles in suspensions. Small angle x-ray scattering and x-ray photon correlation spectroscopy allow us to analyze the intraparticle (core-shell) and interparticle structure of the suspension, as well as their dynamic and hydrodynamic behavior. Due to the weak magnetic interactions, the liquidlike structure is governed by screened Coulomb interactions. The hydrodynamic interactions of the measured systems are significantly stronger than predicted by current theories.  相似文献   

4.
In this paper, we will show the influence of an additional rodlike component, that is, fd-virus, on the diffusion of spherical polystyrene colloids close to a wall. The sphere diffusivity normal to the wall, D perpendicular, is strongly affected by the presence of the rods, while the effect on the parallel diffusivity, D||, is less pronounced except in the immediate vicinity of the wall. We show that this observation cannot be explained by describing the effect of the rods as a simple mean field depletion potential alone.  相似文献   

5.
The authors report Brownian dynamics simulation of the out-of-equilibrium dynamics (aging) in a colloidal suspension composed of rigid charged disks, one possible model for Laponite, a synthetic clay deeply investigated in the last few years by means of various experimental techniques. At variance with previous numerical investigations, mainly focusing on static structure and equilibrium dynamics, the authors explore the out-of-equilibrium aging dynamics. They analyze the wave vector and waiting time dependence of the dynamics, focusing on the single-particle and collective density fluctuations (intermediate scattering functions), the mean-squared displacement, and the rotational dynamics. Their findings confirm the complexity of the out-of-equilibrium dynamical behavior of this class of colloidal suspensions and suggest that an arrested disordered state driven by a repulsive Yukawa potential, i.e., a Wigner glass, can be observed in this model.  相似文献   

6.
We introduce a model colloid system comprised of particles dispersed in a viscous solvent that can be applied to 3D direct visualization studies of suspension structure, dynamics and rheology. The colloids are poly(methyl methacrylate) (PMMA) spheres sterically stabilized by a copolymer of poly(diphenyl-dimethyl) (DPDM) siloxane that matches the refractive index of PMMA. The monodisperse particles, synthesized with mean diameter varying from 0.7 to 1.1 microm, are stably dispersed in a DPDM siloxane solvent, with viscosity varying from 2.2 to 4.3 Pa s at 20 degrees C. As opposed to other classes of PMMA colloids dispersed in organic solvents, this system displays minimal charge interactions. At room temperature, pair potential interactions (measured by extrapolation of pair correlation functions to infinite dilution) are well modeled by a generalized Lennard-Jones alpha-2alpha potential (alpha=10) with dimensionless interaction energy, epsilon/k(B)T=0.6. We use the DPDM-PMMA colloidal system in conjunction with confocal microscopy studies to measure: (i) the radial distribution function in 3D at dilute concentrations and (ii) the colloid self-diffusivity in 3D at dilute concentrations. Both measurements, neither previously reported in uncharged systems, are facilitated by the slow, viscous dynamics of the system. We also show that the viscosity and particle size of the system are such that the high-volume fraction shear thickening transition can be accessed at shear rates amenable to direct visualization.  相似文献   

7.
The addition of montmorillonite clay modified with an alkylammonium salt surfactant (i.e., organoclay) to paraffin wax is found to reduce the decay in wetting properties associated with its heating in the melt. It was previously shown that holding wax in its molten form prior to characterization reduces crystallinity when the solid forms. This results in the development of microscale amorphous regions at wax surfaces, which appear to be more polar given the abundance of methylene linkages versus methyl groups. These regions are believed to impact the receding angles for more polar liquids almost exclusively. It is known that the introduction and exfoliation of a small amount of the organoclay greatly enhances the stiffness, strength, and toughness of paraffin wax. Here, it is shown that the organoclay also promotes the formation of coatings possessing fewer thermal cracks and helps maintain higher crystallinity levels. Fresh wax surfaces containing the clay are slightly rougher than those without, which produces a slight increase in hysteresis. However, the significant drops in receding angles found for paraffin wax samples cast from the melt subsequent to heating are absent.  相似文献   

8.
The effect of nanoclay addition in Glass Fiber Reinforced Epoxy (GFRE) composites on impact response was studied. The epoxy nanocomposite matrix with 1.5 and 3.0 wt% loading of I.30E nanoclay was produced by high shear mixing. Hybrid GFRE nanoclay composite plates were manufactured by hand layup and hot pressing techniques using electrical grade-corrosion resistant (E-CR) glass fiber mats. The laminates were then subjected to low-velocity impact with energies between 10 and 50 J. Addition of nanoclay was found to improve peak load and stiffness of GFRE. Nanoclay loading of 1.5 wt% resulted in optimum properties, with 23% improvement in peak load and 11% increase in stiffness. A significant reduction in physical damage was also observed for hybrid nanocomposite samples as compared to GFRE. This was mainly attributed to transition in damage mechanism due to nanoclay addition. Clay agglomeration in samples with 3.0 wt% loading contributed towards limiting the improvement in impact resistance.  相似文献   

9.
10.
Flammability of synthetic fibres is significantly worse than that of bulk polymers because of the high surface area to volume ratio and the low tolerance to high filler loadings in the fibre production process. Introducing nanocomposite structures has the potential to enhance the char formation at relatively low loadings of nanoparticulate fillers and hence can reduce the flammability of synthetic polymers and fibres.This paper reports thermal degradation analysis results in conjunction with TG analysis under different atmospheres and further studies of X-ray diffraction characterisation of fibre-forming polypropylene containing selected dispersed nanoclays.The concentrations of hydrocarbons, carbon monoxide and carbon dioxide released during the TG analysis have been monitored and analysed by using a combined electrochemical infrared analyser. The intensity changes of the crystallinity peaks and nanoclay peaks in the polymer and composites are discussed.  相似文献   

11.
The effect of nanoclay on the fatigue crack growth behavior was investigated. Fatigue tests were carried out on edge notched specimens under cyclic tension loadings. A power–law dependency between crack growth rate and tearing energy was obtained. Natural rubber (NR) filled with 5 phr organically modified montmorillonite (OMMT) possessed the lowest value of the exponent, b, and the smallest crack growth rate at a given tearing energy, denoting the strongest resistance to crack growth. Strain‐induced crystallization was probed by synchrotron WAXD experiments, showing earliest occurrence and strongest ability of crystallization in NR with 5 phr OMMT due to the better exfoliation and orientation of clay layers. The study on the viscoelastic property by dynamic mechanical analysis indicated that NR filled with 10 phr OMMT had the largest contribution to tearing energy attributed to the viscoelastic dissipation in the viscoelastic region in front of the crack tip. This revealed that the strain‐induced crystallization played a more important role in the crack growth resistance than the viscoelastic dissipation for clay filled rubber. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The effect of Lucentite™ STN nanoclay on the relaxation behavior of poly(vinylidene fluoride) (PVDF) nanocomposites was investigated using dielectric relaxation spectroscopy (DRS) and wide- and small-angle X-ray scattering. Lucentite™ STN is a synthetic nanoclay based on hectorite structure containing an organic modifier between the hectorite layers. The addition of this nanoclay to PVDF results in preferential formation of the beta-crystallographic phase. When the STN content increased to 5% and 10%, only the beta-phase was observed. Bragg long period and lamellar thickness both decrease with STN addition. The relaxation rates for processes termed αa (glass transition, related to polymer chain motions in the amorphous regions) and αc (related to polymer chain motions in the crystalline regions and fold surfaces) can be described either with the Vogel-Fulcher-Tamman equation or with Arrhenius behavior, respectively. DRS shows that the αa relaxation rate increases with the concentration of STN because of the reduction of intermolecular correlations between the polymer chains, caused by the presence of layered silicate nanoclay particles, which serve to segregate polymer chains in the amorphous regions. Comparing samples with beta-crystal phase dominant, the relaxation rate for the αc relaxation also increases with concentration of STN in all nanocomposite samples. Dielectric properties at low frequencies are dominated by the dc conductivity, and as more STN is added, the conductivity increases rapidly. The addition of 10% STN makes the dc conductivity increase by almost four decades when compared with neat PVDF. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2520–2532, 2009  相似文献   

13.
A novel amorphous polyamide/montmorillonite nanocomposite based on poly(hexamethylene isophthalamide) was successfully prepared by melt intercalation. Wide angle X-ray diffraction and transmission electron microscopy showed that organoclay containing quaternary amine surfactants with phenyl and hydroxyl groups was delaminated in the polymer matrix resulting in well-exfoliated morphologies even at high montmorillonite content. Differential scanning calorimetry results indicated that clay platelets did not induce the formation of a crystalline phase in this amorphous polymer. Tensile tests demonstrated that the addition of nanoclay caused a dramatic increase in Young's modulus (almost twofold) and yield strength of the nanocomposites compared with the homopolymer. The nanocomposites exhibited ductile behavior up to 5 wt % of nanoclay. The improvement in Young's modulus is comparable with semicrystalline aliphatic nylon 6 nanocomposites. Both the main chain amide groups and the amorphous nature of the polyamide are responsible for enhancing the dispersion of the nanofillers, thereby, leading to improved properties of the nanocomposites. The structure-property relationship for these nanocomposites was also explored. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2605–2617, 2008  相似文献   

14.
The aim of this study is to investigate the performance of nanoclay reinforced unsaturated polyester (UP) resin under impact loads. Nanocomposite specimens containing nanoclay in 0, 1.5, and 3 (wt%) were prepared by melt mixing method. X‐ray diffraction, transmission electron microscopy analysis, scanning electron microscope photographs, and viscosity changes in liquid state resin confirmed exfoliation and intercalation of the nanoclay in the UP resin system used. Tensile modulus showed an increase with increase in nanoclay content. However, the tensile strength and elongation at break exhibited reducing performance with increase in nanoclay content. Izod impact test results indicated better performance for the specimens containing nanoclay reinforcements, with 1.5 (wt%) of nanoclay specimens showing the highest value. High velocity impact tests were carried out using gas gun in velocity range of 20–100 m/sec and harden steel hemispherical tip projectile with diameter of 8.7 mm and weight of 11.54 g. Results for high velocity impact test indicated better performance by the specimens containing nanoclay, with 1.5 (wt%) nanoclay showing the highest attained value. Damage assessments of impact area for all specimens showed spalling type brittle failure with punch out and sever fragmentation pattern. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The aims of this research were to develop the first self-healing dental nanocomposite and to evaluate mechanical properties (compressive and flexural strength), crack-healing, and self-healing longevity after 90 days of water aging. The principal reasons for failure are microcracks formed by polymerization shrinkage, recurrent dynamic mechanical stress, water sorption, and thermal fatigue. N, N-dihydroxyethyl p-toluidine and triethylene glycol dimethacrylate (DEPT-TEGDMA) nanocapsules were synthesized as they have been proven previously to be biocompatible for dental materials. Nanoclay was used as a filler to improve the mechanical properties of self-healing tooth nanocomposites. Nanocapsules were prepared by in situ emulsion polymerization of poly urea-formaldehyde (PUF) shells. The synthesized PUF shells were characterized by FTIR, SEM, and DLS analyses. The results showed that incorporating nanocapsules at a 7.5% mass fraction into the nanocomposite increased the mechanical properties. A good self-healing efficiency ranging from 54.06 to 58% recovery was obtained. The 90 days of water-aging compared to 1 day did not reduce the self-healing efficiency (p > 0.1), showing water-aging did not damage the nanocapsules.  相似文献   

16.
17.
The crystallization behavior of Nylon-6 and the interaction in Nylon-6/nanoclay/functionalized polyolefin blends were investigated by X-ray diffraction and Fourier transform infrared spectroscopy. For samples without any thermal history, the interaction between Nylon-6 and nanoclay or the interaction between Nylon-6 and functionalized polyolefin favors the formation of γ form crystal. In contrast, the presence of both nanoclay and functionalized polyolefin together in Nylon-6 was found to have an antagonistic effect on each other's ability to promote the formation of γ form crystal. This was attributed to the complex interactions between the constituents. The crystallization behavior of Nylon-6 in Nylon-6/nanoclay/functionalized polyolefin blends is clearly affected by the cointeraction of these effects. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1494–1502, 2007  相似文献   

18.
A new polymeric laponite nanoclay heterogeneous catalytic system based on HPMC (hydroxypropyl methyl cellulose) was developed for direct Mannich-type reaction of ketones with substituted benzaldehydes and anilines to afford corresponding β-amino ketones in good to high yields. Interestingly, cyclic ketones exhibited different chemoselectivity. Cyclopentanone underwent aldol condensation to give crossed-aldol product, while cyclohexanone and cyclopentanone afforded corresponding Mannich adducts. In the case of cyclohexanone, stereoselectivity was changed depending on the nature of the substitution on benzaldehydes, in which, moderate electron-donating and electron-withdrawing groups afforded the anti isomer as major products, but strongly electron-donating substituted benzaldehydes led to syn isomer as the major Mannich adducts. Mannich reaction with cycloheptanone led to Mannich adducts with excellent syn selectivity.  相似文献   

19.
We have studied the rheological properties of clay suspensions in silicone oil, where clay surfaces were modified with three different types of surfactants. Dynamic oscillation measurements showed a plateau-like behavior for all the organoclay suspensions studied, which indicated more solid-like characteristics. Shear stress results showed a non-Newtonian behavior over a wide applied shear range and increased at a high shear rate for all the organoclay suspensions. Shear-thinning behavior was observed for all the suspensions investigated. Our results exhibited that G(t), which was calculated using the Schwarzl equation, increased with increasing the degree of hydrophobicity of the surfactant used for the modification of pristine clay surface and decreased with time following a downward curve. A similar trend to that of G(t) was also observed for all the organoclay suspensions when Coleman and Markovitz relation was used.  相似文献   

20.
A simple and versatile method for the preparation of conductive composites based on core–shell polyaniline (PANI) one-dimensional nanoclay distributed in poly(ethylene-vinyl acetate) (EVA) latex with high colloidal stability is demonstrated. The morphological and electrical properties of the composites were investigated. The nanostructures were synthesized from PANI-coated sepiolite nanorods via in situ oxidative polymerization after the surface modification of the sepiolite with ammonium and anilinium salts. Two forms of PANI nanoclay, powder and paste, have shown a much different percolation threshold and significantly different morphologies due to their dispersion ability in EVA matrix. At the same PANI content, the conductivity of the blends with paste is much higher than that of blends with powder PANI nanoclay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号