首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过自主设计的多流体多次注射成型装置研究二次剪切应力场和复杂温度场对高密度聚乙烯晶体形态发展的影响.用偏光显微镜(PLM)和扫描电子显微镜(SEM)分析了多流体多次注射成型(multi-fluid multi-injection molding,MFMIM)和传统注射成型(conventional injection ...  相似文献   

2.
在不同的共混比例、不同的结晶温度下对不相容PHBV/PS、PHBV/PMMA结晶/非晶共混体系的结晶行为做了系统的研究.研究发现当PHBV含量为75wt%时,共混体系仍然和纯PHBV一样生成环带球晶;而当PHBV含量为50wt%时,共混体系在略低于非晶组分玻璃化转变温度时呈现花瓣状的球晶形貌;当PHBV含量为25wt%时,PHBV/PS体系出现不规则的晶体形貌,而PHBV/PMMA体系在偏光显微镜下没有观察到晶体.在这种不相容共混体系中,非晶组分的分散状态以及共混比例对共混体系中PHBV环带球晶的形成起到决定性的作用,而非晶组分对PHBV球晶的片晶前端生长的影响是形成花瓣状球晶的主要原因.  相似文献   

3.
Only a single type of circular circumferential crack is conventionally reported for poly(l-lactic acid) (PLLA). In this study, PLLA samples were found to exhibit as many as four crack types of different directions and patterns, which cannot be feasibly explained simply by the directional difference in coefficients of thermal expansion. Depending on crystallization temperature (T c), PLLA crystallizes into ringless or ring-banded spherulites, whereas the crack patterns are dramatically different in these two types of spherulites. In ring-banded spherulites of PLLA crystallized at intermediate T c, two uniquely different crack types are present: (1) twin circumferential cracks coinciding with the dark–bright and bright–dark boundary and (2) radial short-segmental voids coinciding on the bright bands in spherulites. The radial short-segmental cracks on the bright band of ring-banded spherulites may be caused by PLLA crystals of radial direction with various twisting that contract laterally upon cooling. Only circumferential cracks are present in PLLA crystallized into ringless spherulites, where concentric continuous circumferential cracks are present in the ringless spherulites at low T c with finer lamellae, but discontinuous and irregular circumferential cracks are present in the ringless spherulites at high T c with coarse lamellae. Although all cracks are triggered by cooling from T c, all evidences indicate that the crack patterns and types are highly associated with the lamellar orientation, patterns, and coarseness in spherulites.  相似文献   

4.
We synthesized novel axially chiral binaphthyl derivatives with highly twisting powers by substituting phenylcyclohexyl (PCH) mesogenic moieties into 2,2' positions or 2,2',6,6' positions of binaphthyl rings. The di- and tetrasubstituted binaphthyl derivatives, abbreviated as D-1 and D-2, respectively, were adopted as chiral dopants to induce chiral nematic liquid crystals (N*-LCs) available for synthesis of helical polyacetylene. The helical twisting power (betaM) of D-2 was 449 microm(-1), which was ca. 2.6 times larger than that of D-1 (171 microm(-1)). We prepared two kinds of induced N*-LCs with 5 microm and 270 nm in helical pitch by adding the chiral dopants D-1 and D-2 into the host N-LCs, respectively. The helical polyacetylene synthesized in the N*-LC containing D-2 exhibited highly screwed fibrils, but not a bundle of fibrils. This result is in quite contrast to the usual fibril morphology, where the screwed fibrils are gathered to form the bundle of fibrils, as observed in the helical polyacetylene synthesized in the N*-LC containing a chiral dopant with moderate helical twisting power, such as D-1. It is of keen interest that the helical pitch (270 nm) of the N*-LC including D-2 is much smaller than the diameter (ca. 1 microm) of the bundle of fibrils, which should depress the formation of the bundle of fibrils. The morphology free from the bundle of fibrils might enable us to evaluate more precisely intrinsic electromagnetic properties of a single screwed fibril of helical polyacetylene.  相似文献   

5.
Poly(trimethylene terephthalate)/polyethylene glycol (PTT/PEG) copolymers, with PEG content ranging from 27.2 to 47.4 wt%, were synthesized by melt copolycondensation. Wide-Angle X-ray diffractometer revealed that all copolymers had the same crystal structure of homo-PTT at room temperature. All copolymers could form ring-banded spherulites, and band spacing increased with increasing PEG content at a given crystallization temperature. Nonisothermal crystallization morphology of copolymers was greatly influenced by cooling rate. When the cooling rate was 2.5 °C/min or lower, banded patterns were absent, whereas when the cooling rate was 20 °C/min or higher, a novel crystal morphology composed of non-banded spherulites (central part) and ring-banded spherulites with decreasing band spacing along the radial growth direction was observed. Moreover, the size of the non-banded spherulitic part decreased with increasing cooling rate. Finally, the nonisothermal crystallization kinetics of copolymers were analyzed and only the Mo method was satisfactory to accurately describe this system.  相似文献   

6.
Banded spherulites are formed by crystallization of a chiral polymer that is end‐capped with chromophore. Induced circular dichroism (ICD) of the chromophore can be found in the crystallized chiral polymers, giving exclusive optical response of the ICD. The ICD signals are presumed to be driven by the lamellar twisting in the crystalline spherulites, and the exclusive optical activity is attributed to the chirality transfer from molecular level to macroscopic level. To verify the suggested mechanism, the sense of the lamellar twisting in the crystalline spherulite is determined using PLM for the comparison with the ICD signals of the chromophore in the electron circular dichroism spectrum. The conformational chirality of the chiral polymer is determined by the vibrational circular dichroism spectrum. On the basis of the chiroptical results, evolution of homochirality from helical polymer chains (conformational chirality) to lamellar twisting in the banded spherulite (hierachical chirality) is suggested.  相似文献   

7.
The isothermal crystallization process of a PCL/SAN blend (90/10 wt.-%) was investigated by using real time image analysis and hot stage optical microscopy. It was found that the growth rate of ringbanded spherulites in the isothermal crystallization process is not constant. Slow growth occurs in the bright bands, while fast growth is found in the dark bands. The radially unequal growth rate of ring-banded spherulites in PCL/SAN blends may be related to the convex band structure on the surface. This new discovery gives us the idea that rhythmic growth is effective in the growth process of ring-banded spherulites.  相似文献   

8.
通过变温广角X射线衍射(WAXD)、 差示扫描量热法(DSC)和偏光显微镜(POM)研究了聚左旋乳酸-聚乙二醇(PLLA-PEG)二嵌段共聚物的非等温结晶行为, 并用Ozawa方程分析了PLLA-PEG的非等温结晶动力学. 实验结果表明, 高熔点的硬段PLLA结晶符合Ozawa理论, 而低熔点的软段PEG对PLLA的结晶起到了稀释剂的作用; 当软段PEG开始结晶时, 已经结晶完全的硬段PLLA限制了PEG的结晶, 使得软段PEG的结晶不符合Ozawa理论. 此外, 不同降温速率下的结晶形貌研究结果表明, 随着降温速率的增加, 晶体经历了从环带球晶、 环带和十字消光的混合球晶到典型的十字消光球晶的转变, 并且球晶的尺寸也明显变小.  相似文献   

9.
Thermal behavior and phase behavior in blends of liquid crystalline poly(aryl ether ketone) with lateral methoxy groups (M-PAEK) and poly(aryl ether ether ketone) containing thioether units (S-PEEK) have been investigated by differential scanning calorimetry (DSC) and polarized light microscopy (PLM) techniques. The results indicate that the composition of the blends has great effect on the phase behavior and morphology. Thin films of pure M-PAEK and S-PEEK crystallized from the melts exhibit typical mosaic and spherulitic structures, respectively. For the blends with higher M-PAEK contents (> 50%), an unusual ring-banded spherulite with structural discontinuity is formed. The bright core and rings of the ring-banded spherulites under PLM are composed of M-PAEK phase, while the dark rings consist mainly of S-PEEK phase. For the 50:50 M-PAEK/S-PEEK blend, the ring-banded spherulites and S-PEEK spherulites coexist, which implies that a partial phase separation between the two components takes place in the melting state. In S-PEEK-rich blends, a volume-filled spherulite is produced. In addition, the effect of isothermal crystallization temperature on the phase behavior, especially the ring-banded spherulite formation in the blends, is discussed.  相似文献   

10.
Spherulite morphology and growth kinetics of poly(octamethylene terephthalate) (POT), cast on single-side glass or confined between two slides in thin-film forms, were characterized using polarized versus nonpolarized optical microscopy, scanning electron microscopy (SEM), and wide-angle X-ray (WAXD) analysis. POT can simultaneously display solely one type of spherulite or dual types of spherulites (double-ring-banded and ringless ones), depending on T c or T max imposed. Fractions of these two types depend on T c when quenched from a fixed T max = 160 degrees C. At lower T c's, POT exhibits higher crystallization rates leading to higher fractions of ringless spherulites; at higher T c's, POT exhibits lower crystallization rates leading to ring-banded spherulites. At intermediate to high T c's where the growth kinetics of POT could be monitored, the ring-band type dominates and the fraction of ringless spherulites is insignificantly small. Both ringless and ring-banded spherulites can be seen in regime III ( T c = 70-110 degrees C), with fractions of ringless type of spherulites decreasing with temperature. Thus, growth kinetics for POT was mainly focused on the regime of ring-banded spherulites. In regime III, the ring-band pattern is more orderly concentric with smaller inter-ring spacing (1-2 mum) for lower T c's but intermediately larger spacing (3-5 mum) for higher T c's. The orderly lamellar orientation in the ring-bands in contrast with the inter-ring valley region is discussed. In regime II (115 degrees C and above), the ring-band pattern is first distorted to highly zigzag irregularity at higher T c's and then eventually disappears at extremely high T c, with the lamellar crystals eventually turning dendritic with no rings. Apparently, the types of spherulites in polymers are more influenced by the growth rates as determined by T c and slightly less by T max, but not by the substrate surface nucleation.  相似文献   

11.
A remarkable property of certain glass-forming liquids is that a fast mode of crystal growth is activated near the glass transition temperature Tg and continues in the glassy state. This growth mode, termed GC (glass-crystal), is so fast that it is not limited by molecular diffusion in the bulk liquid. We have studied the GC mode by growing seven polymorphs from the liquid of ROY, currently the top system for the number of coexisting polymorphs of known structures. Some polymorphs did not show GC growth, while others did, with the latter having higher density and more isotropic molecular packing. The polymorphs not showing GC growth grew as compact spherulites at all temperatures; their growth rates near Tg decreased smoothly with falling temperature. The polymorphs showing GC growth changed growth morphologies with temperature, from faceted single crystals near the melting points, to fiber-like crystals near Tg, and to compact spherulites in the GC mode; in the GC mode, they grew at rates 3-4 orders of magnitude faster with activation energies 2-fold smaller than the polymorphs not showing GC growth. The GC mode had rates and activation energies similar to those of a polymorphic transformation observed near Tg. The GC mode was disrupted by the onset of the liquid's structural relaxation but could persist well above Tg (up to 1.15 Tg) in the form of fast-growing fibers. We consider various explanations for the GC mode and suggest that it is solid-state transformation enabled by local molecular motions native to the glassy state and disrupted by the liquid's structural relaxation (the alpha process).  相似文献   

12.
本文通过研究含氯侧基液晶聚芳醚酮/含甲基苯侧基聚芳醚酮共混体系(结晶/非晶)环带球晶的形态演变和发展过程; 利用选择性溶剂刻蚀方法确定共混体系环带球晶的相组成和相结构, 探讨了环带球晶的形成机理.  相似文献   

13.
The development of the morphology in poly(vinylidene fluoride)/poly(3‐hydroxybutyrate) (PVDF/PHB) blends upon isothermal and anisothermal crystallization is investigated by time‐resolved small‐ and wide‐angle X‐ray scattering. The components are completely miscible in the melt but crystallize separately; they crystallize stepwise at different temperatures or sequentially with isothermal or anisothermal conditions, respectively. The PVDF crystallizes undisturbed whereas PHB crystallizes in a confined space that is determined by the existing supermolecular structure of the PVDF. The investigations reveal that composition inhomogeneities may initially develop in the remaining melt or in the amorphous phases of the PVDF upon crystallization of that component. The subsequent crystallization of the PHB depends on these heterogeneities and the supermolecular structure of PVDF (dendritically or globularly spherulitic). PHB may form separate spherulites that start to grow from the melt, or it may develop “interlocking spherulites” that start to grow from inside a PVDF spherulite. Occasionally, a large number of PVDF spherulites may be incorporated into PHB interlocking spherulites. The separate PHB spherulites may intrude into the PVDF spherulites upon further growth, which results in “interpenetrating spherulites.” Interlocking and interpenetrating are realized by the growth of separate lamellar stacks (“fibrils”) of the blend components. There is no interlamellar growth. The growth direction of the PHB fibrils follows that of the existing PVDF fibrils. Depending on the distribution of the PHB molecules on the interlamellar and interfibrillar PVDF regions, the lamellar arrangement of the PVDF may contract or expand upon PHB crystallization and the adjacent fibrils of the two components are linked or clearly separated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 974–985, 2004  相似文献   

14.
The surface structure of the ring‐banded spherulites in polymer blends PCL/SAN (90/10) was studied by optical microscopy, SEM, and TEM, respectively. It is interesting to find that the surface structure of the ring‐banded spherulites in polymer blends PCL/SAN (90/10) is made up of the convex bands. The landscape of the convex bands on the surface has been little emphasized before. Radial fibrils are arranged on the bands. Details of the radial fibrils on the bands can be observed by TEM. The landscape of the convex bands on the surface and twisting of lamellae in the convex bands for PCL/SAN blends may be useful to explain the formation mechanism of the ring banded spherulites in polymer blends or even in homopolymers. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2682–2691, 1999  相似文献   

15.
The spherulitic structures and morphologies of poly-(3-hydroxybutyrate) (PHB) crystallized from a so- lution and a thin melt film were investigated in this study. The formation mechanisms of banded spherulites under different crystallization conditions are proposed. It was found that the formation of banded spherulites was caused by the rhythmic crystal growth of the spherulites and lamellar twisting growth for the polymer crystallization from a thin melt film and a solution, respectively.  相似文献   

16.
Five photochromic chiral azobenzene compounds and one nonphotochromic chiral compound were synthesized and characterized by IR, 1H NMR spectroscopy, and elemental analysis. Cholesteric liquid crystalline phases were induced by mixing of the nonphotochromic chiral compound and one of the photochromic chiral azobenzene compounds in a host nematic liquid crystal (E44). The helical pitch of the induced cholesteric phase was determined by Cano's wedge method and the helical twisting power (HTP) of each sample was thus determined. The helical twisting powers of azobenzene compounds were decreased upon UV irradiation, due to trans-->cis photoisomerization of azobenzene molecules. Among the azobenzene compounds synthesized in our study, Azo-5, with isomannide (radical) as chiral photochromic dopant, showed the highest HTP and contrast ratio (Tmax/Tmin). Photoswitching between compensated nematic phase and cholesteric phase was achieved through reversible trans<-->cis photoisomerization of the chiral azobenzene molecules through irradiation with UV and visible light, respectively. Transmission rates (contrast ratios) increased with decreasing helical pitch length in the induced cholesteric phase. The influence of helical twisting power on the photoswitching behavior of chiral azobenzene compounds is discussed in detail.  相似文献   

17.
Top-surface and three-dimensional views of Type-1 and Type-2 of ring-banded spherulites in poly(nonamethylene terephthalate) (PNT) in thicker bulk crystallized on a nucleating potassium bromide (KBr) substrate were examined using various microscopy techniques: scanning electron microscopy (SEM), polarized-optical microscopy (POM), and atomic-force microscopy (AFM). In PNT crystallized at higher crystallization temperature (T(c)) with heterogeneous nucleating substrate, typically two types of ring-banded spherulites are present that differ significantly in patterns and ring spacings: Type-1 Type-2 (single- and double-ring-banded spherulites). Three-dimensional view on fractured spherulites in bulk PNT samples reveals that the single-ring-banded spherulite (Type-1) tends to be well-rounded spheres as they are nucleated homogeneously from bulk; the double-ring-banded spherulite (Type-2) is concentric hemisphere or truncated sphere shells owing to be nucleated from bottom. With confined thickness of films, the 3-D hemispheres in PNT may become truncated into multi-shell annular cones or arcs when thickness or growth is restricted. Based on the top-surface vs. interior views of banded lamellar assembly, origins and inner structures of dual types of ring bands in PNT were examined in greater details.  相似文献   

18.
A series of crown ether type binaphthyl derivatives (CEBDs) were synthesized and used as chiral dopants to induce chiral nematic (N*) liquid crystals (LCs). The twisting powers of the CEBDs for phenylcyclohexane (PCH)-derived nematic LCs were evaluated. It was found that the twisting powers of the CEBDs increased with decreasing ring size of the crown ether. Helical polyacetylenes were synthesized in the N*-LCs induced by the CEBDs. The relationship between the morphology of the helical polyacetylene and the helical structure of the N*-LC was investigated. The result showed that the interdistance between the fibril bundles of the helical polyacetylene was equal to a half-helical pitch of the N*-LC and the screw direction of the polyacetylene fibrils was opposite to that of the N*-LC.  相似文献   

19.
A new aryl polyester, poly(pentamethylene terephthalate) (PPT) with five methylene groups in the repeat unit, was synthesized. Its multiple‐melting behavior and crystal structure were analyzed with differential scanning calorimetry and wide‐angle X‐ray diffraction. In addition, the spherulitic/lamellar morphology of melt‐crystallized PPT was investigated. Typical Maltese‐cross spherulites (with no rings) were seen in melt‐crystallized PPT at low temperatures (70–90 °C), but ring patterns were seen in PPT crystallized only at temperatures ranging from 100 to 115 °C, whereas rings disappeared with crystallization above 120 °C. The mechanisms of the rings in PPT were explained with several coordinated directional changes (wavy changes, twisting changes, and combinations) in the lamellae during growth. Scanning electron microscopy, in combination with atomic force microscopy, further proved that the ringed spherulites originated from the aggregation of sufficient numbers of edge‐on lamellar crystals; the radial‐growth edge‐on/flat‐on lamellae could be twisted and/or waved to form realistic band patterns. A postulated model properly described a possible origin of the ring bands through combined mechanisms of waving (zigzagging) and twisting (spiraling) of the lamellae during crystallization. Superimposed twisting and/or wavy models during crystallization were examined as examples. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4421–4432, 2004  相似文献   

20.
Supramolecular structure and morphology of as-polymerized, sintered, and gamma-irradiated suspension PTFE were studied with scanning electron microscopy. Irradiation was performed both below and above melting point of crystal phase. Fibrillar supramolecular structure of as-polymerized PTFE is preserved after its sintering. In contrast to as-polymerized PTFE, in the sintered polymer some segments of fibrils form lamellae of thickness 100-300 nm and length up to several microns, with fibrils arranged perpendicularly to a lamella. Irradiation below the melting point (20 and 200 °C) does not change quantitatively PTFE morphology. In both cases and also in the case of pristine PTFE, dense and loose (porous) regions are present in its morphology. Dense regions are packages of irregular shape and consist of densely packaged fibrils. Loose regions consist of individual ribbons and fibrillar lamellae. Irradiation at 200 °C increases greatly the width of lamellae. PTFE structure rearrranges drastically under irradiation above the melting point. New morphology units, spherulites of size about 50 μm, are formed, the spherulites consisting of radially extending fibrils, and porosity decreases substantially. Formation of spherulites is ascribed to radiation-induced chain scission and decrease in molecular mass and viscosity of polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号