共查询到20条相似文献,搜索用时 0 毫秒
1.
Surfactant-assisted route to synthesize well-aligned ZnO nanorod arrays on sol-gel-derived ZnO thin films 总被引:1,自引:0,他引:1
Dev A Panda SK Kar S Chakrabarti S Chaudhuri S 《The journal of physical chemistry. B》2006,110(29):14266-14272
Anisotropic growth of ZnO nanorod arrays on ZnO thin films was achieved at a temperature of 90 degrees C by a surfactant-assisted soft chemical approach with control over size and orientation. ZnO thin films with c-axis preferred orientation had been achieved by the sol-gel technique. Lengths, diameters, and the degree of alignment of the ZnO nanorods were controlled by changing the experimental parameters. It was observed that the surfactant was essential to restrict the lateral growth of the nanorods, whereas the pH level of the reaction medium controlled the length of the nanorods. On the other hand, the orientation of the nanorods depended on the crystalline orientation of the film as well as the pH of the reaction medium. Room-temperature photoluminescence studies revealed that the ZnO nanorods with the best alignment exhibited the best emission property. The ZnO nanorods exhibited a strong UV emission peak at approximately 3.22 eV, ascribed to the band-edge emission. The field emission studies of the well-aligned nanorod arrays exhibited a low turn-on field of 1.7 V/microm to get an emission current density of 0.1 microA/cm(2). 相似文献
2.
Well-aligned ZnO nanorod arrays were prepared on substrates by hydrothermal growth under different conditions. The effect of preparing conditions on the deposition of ZnO nanorods was systematically studied by scanning electron microscopy, X-ray diffraction and photoluminescence spectroscopy. It is demonstrated that the growth conditions such as pre-treatment of the substrates, growth temperature, deposition time and the concentration of the precursors have great influence on the morphology and the alignment ordering of ZnO nanorod arrays. Pre-treatment of substrates, including dispersion of ZnO nanoparticles and subsequent annealing, not only plays a main role in governing the rod diameter, but also greatly improves the rod orientation. Although the rod diameter and its distribution are mainly determined by pre-coated ZnO nanoparticles, they can also be monitored to some extent by changing the concentration of the precursors. The growth temperature has a little influence on the orientation of nanorods but it has great impact on their aspect ratio and the photoluminescent property. Kinetic studies show that the growth of ZnO nanorods contains two distinct step: a fast steps within the first hour, in which the nanorods tend to be short and wide, and a slow step, in which long rods with high aspect ratio are obtained. 相似文献
3.
Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays 总被引:5,自引:0,他引:5
ZnO nanosheets, nanonails, and well-aligned nanorods were fabricated on Zn foils by a solvothermal approach using ethanol as the solvent. A lower synthesis temperature and a shorter time period favor the formation of nanosheets. By optimizing the synthesis temperature and time period, ZnO nanonails with a hexagonal cap and a long stem could be produced. A higher temperature was not favorable to produce uniform and smooth nanorods. Well-aligned ZnO nanorod arrays were produced with diameters within 100-250 nm and lengths up to approximately 6 microm when NaOH was added to the solvent. By optimizing the reaction parameters, the morphology, size, and orientation of the nanoforms could be tailored. The ZnO nanorods exhibit an excitonic strong UV emission and a defect-related broad green emission at room temperature. The defect-related green emission band decreased with the improvement of the degree of alignment of the nanorods. 相似文献
4.
Well-aligned carbon nanotubes (CNTs) with large diameters (25–200 nm) were synthesized by pyrolysis of iron(II) phthalocyanine. The outer diameter up to 218.5 nm and the length of the well-aligned CNTs can be systematically controlled by varying the growth time. A tube-in-tube nano-structure with large and small diameters of 176 and 16.7 nm, respectively, was found. The grain sizes of the iron catalyst play an important role in controlling the CNT diameters. These results are of great importance to design new aligned CNT-based electron field emitters in the potential application of panel displays. 相似文献
5.
Izzati Husna Ismail Kamarulazizi Ibrahim Melati Khairuddean Tho Seiw Yen Yeap Choon Wan 《Journal of Sol-Gel Science and Technology》2014,72(2):369-374
In this study, zinc oxide (ZnO) nanorod were successfully prepared at different growth times (15, 30 and 60 min) using the microwave irradiation method. The ZnO nanorods were simply synthesized at a low temperature (90 °C) with low power microwave assisted heating (about 100 W) and a subsequent ageing process. The synthesized nanorod were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and Ultraviolet–Visible spectroscopy (UV–Vis). The FESEM images showed nanorods with diameter ranging between 50 and 150 nm, and length of 150–550 nm. The XRD results indicate that ZnO nanorods of different time of growth exhibits pure wurtzite structure with lattice parameters of 3.2568 and 5.2125 Å. UV–Vis characterization showed that energy gap decreases with increase in time. The result also shows that growth of ZnO at 60 min produces an energy band gap of 3.15 eV. In general, the results of the study confirm that the microwave irradiation method is a promising low temperature, cheap and fast method for the production of ZnO nanostructures. 相似文献
6.
Highly oriented ZnO nanorod arrays with controlled diameter and length, narrow size distribution and high orientation consistency have been successfully prepared on ITO substrates at different growth temperatures by using a simple hydrothermal method. XRD results indicate that the nanorods are high-quality single crystals growing along [001] direction with a high consistent orientation perpendicular to the substrate. SEM images show that the nanorods have average diameters of about 30-70 nm by changing growth temperature. The thin films consisting of ZnO nanorods with controlled orientation onto ITO substrates allow a more efficient transport and collection of photogenerated electrons through a designed path. For a sandwich-type cell, the relatively high overall solar energy conversion efficiency reaches about 2.4% when the growth temperature is at 95 °C. 相似文献
7.
CdS and CdSe quantum dots subsectionally sensitized solar cells using a novel double-layer ZnO nanorod arrays 总被引:1,自引:0,他引:1
Jianping DengMinqiang Wang Xiaohui SongYanhua Shi Xiangyu Zhang 《Journal of colloid and interface science》2012,388(1):118-122
We report a novel approach for synthesizing CdS and CdSe quantum dots subsectionally sensitized double-layer ZnO nanorods for solar cells, which are comprised of CdS QDs-sensitized bottom-layer ZnO NRs and CdSe QDs-sensitized top-layer ZnO NRs. X-ray diffraction study and scanning electron microscopy analysis indicate that the solar cells of subsectionally sensitized double-layer ZnO NRs, which are the hexagonal wurtzite crystal structure, have been successfully achieved. The novel structure enlarged the range of absorbed light and enhanced the absorption intensity of light. The I-V characteristics show that the double-layer structure improved both the current density (Jsc) and fill factor (FF) by 50%, respectively, and power conversion efficiency (η) was increased to twice in comparison with the CdS QDs-sensitized structure. 相似文献
8.
Yuzhen Zhao Zemin He Huimin Zhang Yang Zhao Kexuan Li Yongming Zhang 《Liquid crystals》2020,47(6):810-818
ABSTRACTIn this study, By hydrothermal reaction, we prepared ZnO nanorod array of high aspect ratio with different growth time. The prepared ZnO nanorod array was on one side of the liquid crystal cell, the another side of the liquid crystal cell is ITO-glass, then the ZnO nanorod array/liquid crystal composite was injected into the liquid crystal cell. Experimental results showed that the bandwidth of the reflection spectrum of the ZnO nanorod array/liquid crystal composite system was wider than the system without ZnO nanorod array. In addition, effects of polymerisation temperatures and the length of ZnO nanorod array on the broad-band reflection of N*-LC composite films were systematically investigated. 相似文献
9.
Yu-Wen Cheng Hua-Long Su Wen-Han Lin Ching-Fuh Lin 《Journal of Sol-Gel Science and Technology》2014,70(1):81-89
Sol–gel zinc oxide (ZnO) thin films generally have non-uniform stripes. After annealing at high temperatures, these thin films are rough and granular. When ZnO rods are grown on such rough and non-uniform surface with the hydrothermal method, collimation, crystalline structure, and defect density are very poor. Here we explore a method to solve this problem. The ZnO thin film is first coated with an Au layer to prohibit the vertical extension of crystallization during the annealing period. As a result, the surface morphology of ZnO thin film is very flat and uniform after annealing. Afterwards, the ZnO rods are grown on the flat and uniform thin film, which gives rise to ZnO rods with very good collimation and crystalline structure. The extremely flat ZnO thin film even enables the fabrication of patterned ZnO rod arrays with regular shapes through lithography. 相似文献
10.
Vertically aligned arrays of ZnO nanorod (ZNR) were rapidly synthesized on ITO glass without needing a pre-prepared seed layer of ZnO via a hexamethylenetetramine (HMT)-assisted electrodeposition route. The effect of HMT on the ZNR electrodeposition process was investigated by the cyclic voltammetric curve and the current–time curve. An electrodeposition growth model based on the capping effect of HMT–4H was proposed. The as-synthesized ZNRs possess single crystalline, a wurtzite crystal structure with markedly preferential growth orientation along [0001] direction determined by transmission electron microscopy and powder X-ray diffraction. As compared with the electrodeposited ZnO film without HMT assistance, the ZNR arrays showed the high transmittance (90%) in the visible wavelength range and the blue-shift of the band gap energy. Moreover, the presence of an optical-phonon E2 (high) at 437.3 cm?1 in Raman spectrum and strong ultraviolet emission at 376 nm but weak defect-related deep level emission in the room temperature photoluminescence spectrum also indicated that such ZNR arrays are of good crystal quality. More importantly, the rapid synthesis of ZNRs could provide the feasibility for preparation of ZnO nanotubes within a shorter time by a subsequent electrochemical dissolution process. 相似文献
11.
Xu XY Zhang HZ Zhao Q Chen YF Xu J Yu da P 《The journal of physical chemistry. B》2005,109(5):1699-1702
Large-area ZnO nanorod arrays have been synthesized successfully on a stainless steel grid at a mild growth temperature of around 400 degrees C. The as-grown ZnO nanorods have uniform diameters of about 30-50 nm with approximately 5 nm tips. Patterned growth can be realized by engineering the shape of the grid in the growth. Photoluminescence demonstrates a sharp strong UV peak and a broad green band. The growth method provides a promising way of producing nanorod arrays with good controllability in patterns and morphologies, which will be critical in potential application such as high-efficiency filtering and catalysts. 相似文献
12.
Martinson AB McGarrah JE Parpia MO Hupp JT 《Physical chemistry chemical physics : PCCP》2006,8(40):4655-4659
Intensity modulated photovoltage and photocurrent spectroscopies reveal that photoanodes based on nanorod arrays exhibit dramatically faster electron transport while retaining similar electron lifetimes (recombination times) compared to standard photoanodes assembled from colloidal nanoparticles. 相似文献
13.
14.
The uniform, large-scale, and bilayered ZnO nanorod array on silicon substrate has been synthesized by a catalyst and template-free chemical reaction in a dilute solution. The effect of different precursor ZnO films on the morphology and size of the ZnO nanorod array has been investigated. Moreover, the morphology evolution of the ZnO nanorod array with the increase of reaction time indicates that the second growth is the reason for the decrease of the ZnO nanorod diameter and the formation of the bilayered ZnO nanorod array. Finally, the field emission from the ZnO nanorod array with different diameters is presented. 相似文献
15.
以Zn(acac)2.H2O为单源前驱体,采用水热法在140℃条件下制备了ZnO纳米棒,并用XRD、SEM、TEM等测试手段对其进行了表征。利用紫外—可见分光光度计测试了其光吸收性能,发现ZnO纳米棒对200-400 nm波长范围的光有很强的吸收性,在可见光范围内,也有较强的吸收。以ZnO纳米棒为光催化剂对有机染料酸性红4B进行了光催化降解实验,并研究了光源、污水浓度对ZnO纳米棒光催化氧化效果的影响。研究结果表明,在日光照射180 min后,对酸性红4B的降解率接近100%。 相似文献
16.
Crystal orientation-ordered ZnO nanorod bundles on hexagonal heads of ZnO microcones: epitaxial growth and self-attraction 总被引:1,自引:0,他引:1
We demonstrate a preferential nucleation, epitaxial growth, and self-attraction of crystal orientation-ordered ZnO nanorod bundles on (0001) plane of single-crystal ZnO microcones. 相似文献
17.
The ZnO nanorod arrays are grown on the sol–gel-derived seed layer through aqueous chemical growth, and then assembled as gas sensors for detecting carbon monoxide (CO). It is found that the structural and photoluminescent properties of the ZnO nanorod arrays are different as they are grown on seed layers annealed at different temperature (300–700 °C), which is ascribed to distinct growth kinetics of nanorods on the annealed seed layer. Moreover, the correlation between the exposed surface area and the defect density of those ZnO nanorod arrays points out the intrinsic (interior) defects can dominate the green emission instead of surface defects in the present study. Furthermore, the quantities of chemisorbed oxygen on ZnO nanorod arrays can be estimated through XPS analysis. Consequently, the influence of intrinsic defects and chemisorbed oxygen on the electrical properties and gas sensitivities of ZnO nanorod arrays has been clearly elucidated. It is demonstrated that the more adsorbed oxygen and an appropriate amount of intrinsic defects is advantageous to obtain superior CO gas sensitivity for ZnO nanorod arrays. 相似文献
18.
ZnO nanorod array coating is a novel kind of solid-phase microextraction (SPME) fiber coating which shows good extraction capability due to the nanostructure. To prepare the composite coating is a good way to improve the extraction capability. In this paper, the ZnO nanorod array polydimethylsiloxane (PDMS) composite SPME fiber coating has been prepared and its extraction capability for volatile organic compounds (VOCs) has been studied by headspace sampling the typical volatile mixed standard solution of benzene, toluene, ethylbenzene and xylene (BTEX). Improved detection limit and good linear ranges have been achieved for this composite SPME fiber coating. Also, it is found that the composite SPME fiber coating shows good extraction selectivity to the VOCs with alkane radicals. 相似文献
19.
20.
Zhang Liying Li Hao Yang Bingwang Han Ning Wang Yu Zhang Zongtao Zhou Ying Chen Deliang Gao Yanfeng 《Journal of Solid State Electrochemistry》2020,24(4):905-914
Journal of Solid State Electrochemistry - Developing highly efficient, low-cost, and stable electrocatalyst for the oxygen evolution reaction (OER) is essential for hydrogen production by... 相似文献