首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The negative differential resistance (NDR) peak current observed in redox active self-assembled monolayer-based molecular junctions has been attenuated by controlling the composition of the molecular junction. Two approaches studied here include capping the electroactive ferrocenyl groups with beta-cyclodextrin and functionalizing the scanning tunneling microscope tip used to probe the self-assembled monolayer (SAM) with n-alkanethiols of different lengths. These are the first examples of systematic modification of the magnitude of the NDR response in a molecule-based system.  相似文献   

2.
Recently, research on conducting molecules containing thiol functional groups such as benzenethiol has been progressing [X. Xiao, B. Xu, N.J. Tao, Nano Lett. 4 (2004) 267]. This conducting molecule is applicable to the study of the negative differential resistance (NDR) and switching properties of logic device. The 4-{4[4-(4-{1-[4-(4-acetylsulfanyl-phenylethynyl)-phenyl]-2,6-diphenyl-pyridinium-4-yl}-phenyl)-2,6-diphenyl-pyridinium-1-yl]-phenylethynyl}-phenylthioacetate (dipyridinium) molecule contains thiol functional groups such as benzenethiol. Thus, we have studied an NDR property of a dipyridinium molecule using the self-assembly method in scanning tunneling microscopy (STM). The Au substrate was exposed to a 1 mM solution of 1-dodecanethiol in ethanol for 24 h to form a monolayer. After thorough rinsing of the sample, it was exposed to a 0.1 μM solution of dipyridinium in dimethylformamide (DMF) for 30 min. After the assembly, we measured the electrical properties of the self-assembly monolayers (SAMs) using ultra high vacuum scanning tunneling microscopy (UHV-STM) and scanning tunneling spectroscopy (STS). As a result, we confirmed the properties of NDR in a negative region at −1.67 V and a positive region at 1.78 V. The energy gap (Eg) was found to be 3.12 eV [C. Arena, B. Kleinsorge, J. Robertson, W.I. Milne, M.E. Welland, J. Appl. Phys. 85 (1999) 1609]. This molecule is applicable to the fabrication of molecular junctions.  相似文献   

3.
Journal of Solid State Electrochemistry - This work presents a theoretical-experimental study on electronic transfer mechanism on crystal silicon surface modified with redox molecules derived from...  相似文献   

4.
The growth behavior of self-assembled monolayer films strongly depends on parameters such as solvent, water concentration in the solvent, substrate type, and deposition method. A further parameter, the temperature, is of particular importance. It has been found that growth kinetics, size, and shape of the structures obtained strongly depend on the deposition temperature. Thus, exact adjustment and control of the solution temperature is of crucial importance for investigation of deposition mechanisms. The development of a temperature control unit has been the basis for a series of experiments on deposition of octadecyltrichlorosilane (OTS) on silicon wafers to study the influence of temperature on growth kinetics and film structure. Characterization of the films was performed with ellipsometry and atomic-force microscopy. It has been found that octadecylsiloxane (ODS) island sizes decrease with increasing temperature. Furthermore, a characteristic temperature exists above which increasingly disordered deposition occurs. At low temperatures (5–10 °C) smaller dot-like features are observed besides larger fractally shaped islands characteristic for self-assembly growth of ODS films. Our results indicate that these small dot-like features originate from ordered aggregates in the adsorption solution and that they are the precursors of the formation of larger islands. However, they can only be observed at low temperatures, because at room temperature they coalesce quickly to form larger units, due to the high surface mobility.  相似文献   

5.
Journal of Solid State Electrochemistry - The authors correct the affiliation and address of the following author in this article (p. 3099)  相似文献   

6.
We have investigated the seedless electroless deposition (ELD) of Ni on functionalized self-assembled monolayers (SAMs) using scanning electron and optical microscopies, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. For all SAMs studied, the Ni deposition rate is dependent on the bath pH, deposition temperature, and complexing agent. In contrast to the physical vapor deposition of Ni on SAMs, electrolessly deposited Ni does not penetrate through the SAM. This behavior indicates that ELD is a suitable technique for the deposition of low-to-moderate reactivity on organic thin films. We demonstrate that Ni can be selectively deposited on SAMs using two different methods. First, selectivity can be imparted by the formation of Ni(II)-surface complexes. As a demonstration, we selectively deposited Ni on the -COOH terminated SAM areas of patterned -COOH/-CH(3) or -COOH/-OH terminated SAMs. Here, Ni(2+) ions form Ni(2+)-carboxylate complexes with the -COOH terminal group, which comprise the nucleation sites for subsequent metal deposition. Second, we demonstrate that nickel is selectively deposited on the -CH(3) terminated SAM areas of a patterned -OH/-CH(3) terminated SAM. In this case, the Ni(2+) ion does not specifically interact with the -CH(3) terminal group. Rather, selectivity is imparted by the interaction of the reductant, dimethylamine borane (DMAB), with the -OH and -CH(3) terminal groups.  相似文献   

7.
Electrical and mechanical properties of metal-molecule-metal junctions formed between Au-supported self-assembled monolayers (SAMs) of electroactive 11-ferrocenylundecanethiol (FcC(11)SH) and a Pt-coated atomic force microscope (AFM) tip have been measured using a conducting probe (CP) AFM in insulating alkane solution. Simultaneous and independent measurements of currents and bias-dependent adhesion forces under different applied tip biases between the conductive AFM probe and the FcC(11)SH SAMs revealed reversible peak-shaped current-voltage (I-V) characteristics and correlated maxima in the potential-dependent adhesion force. Trapped positive charges in the molecular junction correlate with high conduction in a feature showing negative differential resistance. Similar measurements on an electropassive 1-octanethiol SAM did not show any peaks in either adhesion force or I-V curves. A mechanism involving two-step resonant hole transfer through the occupied molecular orbitals (MOs) of ferrocene end groups via sequential oxidation and subsequent reduction, where a hole is trapped by the phonon relaxation, is proposed to explain the observed current-force correlation. These results suggest a new approach to probe charge-transfer involving electroactive groups on the nanoscale by measuring the adhesion forces as a function of applied bias in an electrolyte-free environment.  相似文献   

8.
9.
This paper presents a molecular simulation study of the interactions of a protein (lysozyme) with self-assembled monolayers (SAMs) of mannitol and sorbitol terminated alkanethiols in the presence of explicit water molecules and ions. The all-atom simulations were performed to calculate the force generated on the protein as a function of its distance above the SAM surfaces. The structural and dynamic properties of water molecules both above the SAM surfaces and around the SAM head groups were analyzed to provide a better understanding of the nonfouling behavior of the sugar-based SAM surfaces. Results from this work suggest that both mannitol and sorbitol SAMs generate a tightly bound, structured water layer around the SAM chains. This hydration layer creates a repulsive force on the protein when it approaches the surface, resulting in a nonfouling surface despite the presence of hydrogen-bond donor groups. This work demonstrates the importance of strong surface-water interactions for surface resistance to nonspecific protein adsorption.  相似文献   

10.
Anisotropy of intermolecular and molecule-substrate interactions holds the key to controlling the arrangement of fullerenes into 2D self-assembled monolayers (SAMs). The chemical reactivity of fullerenes allows functionalization of the carbon cages with sulfur-containing groups, thiols and thioethers, which facilitates the reliable adsorption of these molecules on gold substrates. A series of structurally related molecules, eight of which are new fullerene compounds, allows systematic investigation of the structural and functional parameters defining the geometry of fullerene SAMs. Scanning tunnelling microscopy (STM) measurements reveal that the chemical nature of the anchoring group appears to be crucial for the long-range order in fullerenes: the assembly of thiol-functionalized fullerenes is governed by strong molecule-surface interactions, which prohibit formation of ordered molecular arrays, while thioether-functionalized fullerenes, which have a weaker interaction with the surface than the thiols, form a variety of ordered 2D molecular arrays owing to noncovalent intermolecular interactions. A linear row of fullerene molecules is a recurring structural feature of the ordered SAMs, but the relative alignment and the spacing between the fullerene rows is strongly dependent on the size and shape of the spacer group linking the fullerene cage and the anchoring group. Careful control of the chemical functionality on the carbon cages enables positioning of fullerenes into at least four different packing arrangements, none of which have been observed before. Our new strategy for the controlled arrangement of fullerenes on surfaces at the molecular level will advance the development of practical applications for these nanomaterials.  相似文献   

11.
Redox-active self-assembled monolayers (SAMs) provide an excellent platform for investigating electron transfer kinetics. Using a well-defined bridge, a redox center can be positioned at a fixed distance from the electrode and electron transfer kinetics probed using a variety of electrochemical techniques. Cyclic voltammetry, AC voltammetry, electrochemical impedance spectroscopy, and chronoamperometry are most commonly used to determine the rate of electron transfer of redox-activated SAMs. A variety of redox species have been attached to SAMs, and include transition metal complexes (e.g., ferrocene, ruthenium pentaammine, osmium bisbipyridine, metal clusters) and organic molecules (e.g., galvinol, C60). SAMs offer an ideal environment to study the outer-sphere interactions of redox species. The composition and integrity of the monolayer and the electrode material influence the electron transfer kinetics and can be investigated using electrochemical methods. Theoretical models have been developed for investigating SAM structure. This review discusses methods and monolayer compositions for electrochemical measurements of redox-active SAMs.  相似文献   

12.
The energetics of formation of thiyl-gold self-assembled monolayers is investigated using density-functional theory simulations. It is found that the chemisorption of dimethyl disulfide on the reconstructed Au(111) (22 x radical3) surface is most favored at the fcc reconstruction stripe, with initial physisorption leading to disulfide dissociation, adatom/vacancy-pair formation, and then, at a coverage of 7.8% sulfur atoms per gold atom, surface reconstruction lifting. At higher coverages, monolayer formation proceeds similarly on the unreconstructed surface, leading to surface pitting. Formation of the analogous adatom/vacancy-pair bound dissociated adsorbate complex on exposure of the clean unreconstructed surface to methanethiol is shown to be endothermic, however.  相似文献   

13.
In this work, we demonstrate the strong resistance of oligo(phosphorylcholine) (OPC) self-assembled monolayers (SAMs) to protein adsorption and cell adhesion. OPC SAMs were characterized using X-ray photoelectron spectroscopy (XPS), and protein adsorption was measured using a surface plasmon resonance (SPR) sensor. Results are compared with those of phosphorylcholine (PC) SAMs. Despite the existence of negative charge on OPC SAMs and the simple synthesis procedure of OPC thiols, OPC SAMs resist protein adsorption as effectively as or better than PC SAMs formed from highly purified PC thiols. The ease of their preparation and the effectiveness of their function make OPC SAMs an attractive alternative for creating nonfouling surfaces.  相似文献   

14.
Assembly of dodecyl thiocyanate (C12SCN) from ethanol solution onto Au(111)/mica substrates was investigated by scanning tunneling microscopy (STM), near edge X-ray absorption fine structure spectroscopy (NEXAFS), X-ray photoelectron spectroscopy (XPS), and infrared reflection-absorption spectroscopy (IRRAS). Contrary to previous reports, thiolate monolayers formed by cleavage of the S-CN bond can be obtained whose quality is at least as good as that of self-assembled monolayers (SAMs) formed directly from the thiol analogue of C12SCN, dodecanethiol (C12SH). However, the achievable quality is strikingly dependent on the purity of the thiocyanate with even low levels of contamination impeding the formation of structurally well-defined monolayers.  相似文献   

15.
The contact domain utilized by horse cytochrome c when adsorptively bound to a C(10)COOH self-assembled monolayer (SAM) was delineated using a chemical method based on differential modification of surface amino acids. Horse cytochrome c was adsorbed at low ionic strength (pH 7.0, 4.4 mM potassium phosphate) onto 10 microm diameter gold particles coated with HS(CH(2))(10)COOH SAMs. After in situ modification of lysyl groups by reductive Schiff-base methylation, the protein was desorbed, digested using trypsin, and the peptide mapped using LC/MS. Relative lysyl reactivities were ascertained by comparing the resulting peptide frequencies to control samples of solution cytochrome c modified to the same average extent. The least reactive lysines in adsorbed cytochrome c were found to be 13, 72, 73, 79, and 86-88, consistent with a contact region located up and to the left (Met-80 side) of the solvent-exposed heme edge (conventional front face view). The most reactive lysines were 39, 53, 55, and 60, located on the lower backside. The proposed orientation features a heme tilt angle of approximately 35-40 degrees with respect to the substrate surface normal. Factors that can complicate or distort data interpretation are discussed, and the generality of differential modification relative to existing in situ methods for protein orientation determination is also addressed.  相似文献   

16.
Self-assembly provides a simple route to organise suitable organic molecules on noble metal and selected nanocluster surfaces by using monolayers of long chain organic molecules with various functionalities like -SH,-COOH,-NH2, silanes etc. These surfaces can be effectively used to build-up interesting nano level architectures. Flexibility with respect to the terminal functionalities of the organic molecules allows the control of the hydrophobicity or hydrophilicity of metal surface, while the selection of length scale can be used to tune the distant-dependent electron transfer behaviour. Organo-inorganic materials tailored in this fashion are extremely important in nanotechnology to construct nanoelctronic devices, sensor arrays, supercapacitors, catalysts, rechargeable power sources etc. by virtue of their size and shape-dependent electrical, optical or magnetic properties. The interesting applications of monolayers and monolayer-protected clusters in materials chemistry are discussed using recent examples of size and shape control of the properties of several metallic and semiconducting nanoparticles. The potential benefits of using these nanostructured systems for molecular electronic components are illustrated using Au and Ag nanoclusters with suitable bifunctional SAMs.  相似文献   

17.
Self-assembled monolayers of omega-(4'-methylbiphenyl-4-yl) butanethiol (H3C-C6H4-C6H4-(CH2)n-SH) on Au(111) substrates were investigated with scanning tunneling microscopy and contact angle measurements. A striking polymorphism was observed upon annealing, and structural changes were paralleled by a switch in stability against exchange by other thiols from unstable to stable. The phase formed at temperatures above 413 K was characterized by a very high structural perfection over areas exceeding 105 nm2. The results suggest an additional dimension in the control of structure and properties of thiol monolayers if different factors contributing to the energetics of SAMs enter in a competing rather than a cooperative way.  相似文献   

18.
Combining insights from quantum chemistry calculations with master equations, we discuss a mechanism for negative differential resistance (NDR) in molecular junctions, operated in the regime of weak tunnel coupling. The NDR originates from an interplay of orbital spatial asymmetry and strong electron-electron interaction, which causes the molecule to become trapped in a nonconducting state above a voltage threshold. We show how the desired asymmetry can be selectively introduced in individual orbitals in, e.g., oligo(phenyleneethynylene)-type molecules by functionalization with a suitable side group, which is in linear conjugation to one end of the molecule and cross-conjugated to the other end.  相似文献   

19.
New applications of self-assembled monolayers of thiol compounds on gold electrodes are reviewed. They include: (i) exploitation of electrical control of self-assembly of thiol compounds for electrically-addressable immobilization of receptor molecules onto sensor arrays; (ii) a spreader-bar technique for formation of stable nanostructures; and, (iii) use of self-assembled monolayers as selective filters for chemical sensors.  相似文献   

20.
Tribological properties of alkylsilane self-assembled monolayers   总被引:1,自引:0,他引:1  
In this study, we perform molecular dynamics simulations of adhesive contact and friction between alkylsilane Si(OH)(3)(CX(2))(10)CX(3) and alkoxylsilane Si(OH)(2)(CX(2))(10)CX(3) (where X = H or F) self-assembled monolayers (SAMs) on an amorphous silica substrate. The alkylsilane SAMs are primarily hydrogen-bonded or physisorbed to the surface. The alkoxylsilane SAMs are covalently bonded or chemisorbed to the surface. Previously, we studied the chemisorbed systems. In this work, we study the physisorbed systems and compare the tribological properties with the chemisorbed systems. Furthermore, we examine how water at the interface of the SAMs and substrate affects the tribological properties of the physisorbed systems. When less than a third of a monolayer is present, very little difference in the microscopic friction coefficient mu or shear stresses is observed. For increasing amounts of water, the values of mu and the shear stresses decrease; this effect is somewhat more pronounced for fluorocarbon alkylsilane SAMs than for the hydrocarbon SAMs. The observed decrease in friction is a consequence of a slip plane that occurs in the water as the amount of water is increased. We studied the frictional behavior using relative shear velocities ranging from v = 2 cm/s to 2 m/s. Similar to previously reported results for alkoxylsilane SAMs, the values of the measured stress and mu for the alkylsilane SAM systems decrease monotonically with v.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号