首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 901 毫秒
1.
Optical properties of plasmon resonance with Ag/SiO2/Ag multi-layer nanoparticles are studied by numerical simulation based on Green's function theory. The results show that compared with single-layer Ag nanoparticles, the multi-layer nanoparticles exhibit several distinctive optical properties, e.g. with increasing the numbers of the multi-layer nanoparticles, the scattering efficiency red shiRs, and the intensity of scattering enhances accordingly. It is interesting to find out that slicing an Ag-layer into multi-layers leads to stronger scattering intensity and more "hot spots" or regions of stronger field enhancement. This property of plasmon resonance of surface Raman scattering has greatly broadened the application scope of Raman spectroscopy. The study of metal surface plasmon resonance characteristics is critical to the further understanding of surface enhanced Raman scattering as well as its applications.  相似文献   

2.
We theoretically investigate surface plasmon resonance properties in Au and Ag cubic nanoparticles and find a novel plasmonic mode that exhibits simultaneous low extinction and high local field enhancement properties. We analyse this mode from different aspects by looking at the distribution patterns of local field intensity, energy flux, absorption and charge density. We find that in the mode the polarized charge is highly densified in a very limited volume around the corner of the nanocube and results in very strong local field enhancement. Perturbations of the incident energy flux and light absorption are also strongly localized in this small volume of the corner region, leading to both low absorption and low scattering cross section. As a result, the extinction is low for the mode. Metal nanoparticles involving such peculiar modes may be useful for constructing nonlinear compound materials with low linear absorption and high nonlinearity.  相似文献   

3.
Thin film solar cells have the potential to significantly reduce the cost of photovoltaics. Light trapping is crucial to such a thin film silicon solar cell because of a low absorption coefficient due to its indirect band gap. In this paper, we investigate the suitability of surface plasmon resonance Ag nanoparticles for enhancing optical absorption in the thin film solar cell. For evaluating the transmittance capability of Ag nanoparticles and the conventional antireflection film, an enhanced transmittance factor is introduced. We find that under the solar spectrum AM1.5, the transmittance of Ag nanoparticles with radius over 160 nm is equivalent to that of conventional textured antireflection film, and its effect is better than that of the planar antireflection film. The influence of the surrounding medium is also discussed.  相似文献   

4.
We investigate the nanostructure, surface plasmon resonance (SPR) absorption and nonlinear enhancement of Au/Ag alloyed hollow nanoshells prepared by the replacement reaction of Ag nanoparticles in a HAuCI4 aqueous solution. As the volume of HAuCl4 increases from OmL to 0.S mL, the SPR band of the Au/Ag alloyed nanoshells is tuned from 430nm to 780nm, and the third-order nonlinear optical susceptibility is enhanced nearly by an order of magnitude, which indicates a large enhancement of local field in the Au/Ag alloyed hollow nanoshells with hole defects.  相似文献   

5.
We measured the visible light spectral lines of sputtering atoms from solid surfaces orAl, Ti, Ni, Ta and Au which are impacted by 150 keV 126Xeq (6 ≤q ≤ 30). It is found that intensities of the light spectral lines are greatly and suddenly enhanced when the charge state of the ion is raised up to a critical value. If assuming that potential energy released from the incident ion due to capturing one electron is enough to excite a surface plasmon, we can estimate the critical charge states and obtain the results very well consistent with the measurements for the above-mentioned target materials. This means that a surface plasmon induced by one electron capture can enhance the excitation of atomic visible light spectral lines in the impact of a highly charged ion on a solid surface.  相似文献   

6.
谢素霞  李宏建  周昕  徐海清  付少丽 《中国物理 B》2010,19(7):77803-077803
We investigate the relationship between the transmission and the layer distance of double-layer gold slit arrays by using the finite-difference time-domain method.The results show that the transmission properties can be influenced strongly by layer distance.We attribute the two types of resonant modes to surface plasmon resonance and the localised waveguide resonance.We find that the localised waveguide transmission peak redshifts and becomes broader with increasing layer distance D.We also describe and explain the splitting,shift,and degeneration of the surface plasmon resonant transmission peak theoretically.In addition,to clarify the physical mechanism of the transmission behaviours,we analyse the distributions of electric field and total energy for the three transmission peaks with distance D=45 nm for the double-layer system.Light transporting behaviours are mostly concentrated in the region of the slits as well as the interspaces of the two layers,and for different resonant wavelengths the electric field and energy distributions are different.It is expected that the results obtained here will be helpful for designing subwavelength metallic grating devices.  相似文献   

7.
Alternative Ag and SiO2 multilayers are prepared by using radio frequency magnetron sputtering. The Ag particles are found to diffuse toward and mostly accumulate near the surface of the Ag—SiO2 composite film via a rapid thermal treatment. Different shapes of the Ag particles are obtained by changing the thickness of each Ag and SiO2 layer. The response absorption property of the Ag composite film is also investigated. We relate the resonance absorption to the surface level and the Fermi level. To induce the obvious resonance absorption in an Ag composite film, it is necessary to maintain special shapes with sharp edges and wide terraces and to maintain the particle sizes ranging from 0 nm to 100 nm.  相似文献   

8.
<正>The influences of the anisotropy of the outer spherically anisotropic(SA) layer on the far-field spectra and nearfield enhancements of the silver nanoshells are investigated by using a modified Mie scattering theory.It is found that with the increase of the anisotropic value of the SA layer,the dipole resonance wavelength of the silver nanoshell first increases and then decreases,while the local field factor(LFF) reduces.With the decrease of SA layer thickness, the dipole wavelength of the silver nanoshell shows a distinct blue-shift.When the SA layer becomes very thin,the modulations of the anisotropy of the SA layer on the plasmon resonance energy and the near-field enhancement are weakened.We further find that the smaller anisotropic value of the SA layer is helpful for obtaining the larger near-field enhancement in the Ag nanoshell.The geometric average of the dielectric components of the SA layer has a stronger effect on the plasmon resonance energy of the silver nanoshell than on the near-field enhancement.  相似文献   

9.
We examine the microstructural and optical absorption spectra of 10-30vol% Cu-MgF2 nanoparticle cermet films prepared by co-evaporation in vacuum.The results show that the Cu-MgF2 cermet films are mainly composed of the amorphous MgF2 matrix with embedded fcc Cu nanoparticles of average size 12-24nm.The results also show that the optical absorption of the films decreases as the wavelength increases in the range of 200-800nm.The surface plasmon resonance absorption peaks of Cu nanoparticles in 10,20 and 30vol% Cu-MgF2 films appear at 578,588 and 606 nm,respectively.The interband transition absorption of Cu starts from 590nm downwards.Based on the Maxwell-Garnett theory,the experimental optical absorption properties of the films have been quantitatively evaluated.  相似文献   

10.
黄茜  张晓丹  张鹤  熊绍珍  耿卫东  耿新华  赵颖 《中国物理 B》2010,19(4):47304-047304
A combined Ag nanoparticle with an insulating or conductive layer structure has been designed for molecular detection using surface enhanced Raman scattering microscopy. Optical absorption studies revealed localized surface plasmon resonance, which shows regular red shift with increasing environmental dielectric constant. With the combined structure of surface enhanced Raman scattering substrates and rhodamine 6G as a test molecule, the results in this paper show that the absorption has a linear relationship with the local electromagnetic field for insulating substrates, and the electrical property of the substrate has a non-negligible effect on the intensity of the local electromagnetic field and hence the Raman enhancement.  相似文献   

11.
The nanostructured Au/AgxO/Ag sandwich multilayer films on quartz substrates are prepared by the magnetron sputtering method. The morphology, plasmon resonance and surface enhanced Raman scattering (SERS) activi- ties of the multilayer films are studied. The resonant absorption wavelength of localized surface plasmon is tuned in a wide range from 618nm to 993nm by controlling the density of nanoparticles of Au and Ag. The SERS activity of the Au/AgxO/Ag multilayer films are enhanced over -10 times compared with those of bare Ag and bare Au films. These properties may find a potential application in biosensor and bioimaging.  相似文献   

12.
赵翠华  张波萍  尚鹏鹏 《中国物理 B》2009,18(12):5539-5543
Nano metal-particle dispersed glasses are the attractive candidates for nonlinear optical material applications.Au/SiO 2 nano-composite thin films with 3 vol% to 65 vol% Au are prepared by inductively coupled plasma sputtering.Au particles as perfect spheres with diameters between 10 nm and 30 nm are uniformly dispersed in the SiO 2 matrix.Optical absorption peaks due to the surface plasmon resonance of Au particles are observed.The absorption property is enhanced with the increase of Au content,showing a maximum value in the films with 37 vol% Au.The absorption curves of the Au/SiO 2 thin films with 3 vol% to 37 vol% Au accord well with the theoretical optical absorption spectra obtained from Mie resonance theory.Increasing Au content over 37 vol% results in the partial connection of Au particles,whereby the intensity of the absorption peak is weakened and ultimately replaced by the optical absorption of the bulk.The band gap decreases with Au content increasing from 3 vol% to 37 vol % but increases as Au content further increases.  相似文献   

13.
王继飞  李宏建  周子游  李雪勇  刘菊  杨海艳 《中国物理 B》2010,19(11):117310-117310
This paper experimentally and theoretically investigates the effect of the underlayer medium on tuning of the surface plasmon resonance (SPR) wavelength of silver island films,and the effect of substrate temperature on the morphologies and optical properties of the films.From the absorption spectra of single Ag with various thickness and overcoated (Ag/TiO 2) films deposited on glass substrates at various substrate temperatures by RF magnetron sputtering,we demonstrate that the surface plasmon resonance wavelength can be made tunable by changing the underlayer medium,the thickness of metal layer and the substrate temperature.By varying substrate temperatures,the interparticle coupling effects on plasmon resonances of nanosilver particles enhance as the spacing between the particles reduces.When the substrate temperature is up to 500 C,the absorption peak decreases sharply and shifts to shorter wavelength side due to the severe coalescence between silver islands in the film.  相似文献   

14.
范光华  曲士良  郭忠义  王强  李中国 《中国物理 B》2012,21(4):47804-047804
Silver (Ag) nanoparticles with different average sizes are prepared, and the nonlinear absorption and refraction of these nanoparticles are investigated with femtosecond laser pulses at 800 nm. The smallest Ag nanoparticles show insignificant nonlinear absorption, whereas the larger ones show saturable absorption. By considering the previously reported positive nonlinear absorption of 9 nm Ag nanoparticles, the nonlinear absorptions of Ag nanoparticles are found to be size-dependent. All these nonlinear absorptions can be compatibly explained from the viewpoints of electronic transitions, energy bands and electronic structures in the conduction band of Ag nanoparticles. The nonlinear refraction is attributed to the effect of hot electrons arising from the intraband transition in the s–p conduction band of Ag nanoparticles.  相似文献   

15.
The composite PMMA films containing Ag nanoparticles and rhodamine 6G are prepared. We investigate the fluorescence properties and nonlinear optical properties of R6G/PMMA films influenced by Ag nanoparticles. The fluorescence enhancement factor is about 3.3. The corresponding nonlinear refractive index is measured to be -2.423 ×10^-8 esu using the Z-scan technique, which is much enhanced compared with the R6G/PMMA film. The results indicate that these enhancements are attributed to surface plasmon resonance of Ag nanoparticles.  相似文献   

16.
We design a D-shaped fiber optic biosensor based on the surface plasmon resonance (SPR) of a metal- graphene layer and simulate this SPR using the finite element method. Using a metal-graphene layer as the sensing material, surface plasma resonance is simulated as the refractive index of the external environment ranges from 1.33 to 1.36. Simulation results show that a metal-graphene layer attached to the D-shaped optical fiber core can couple with light under a specific polarization state and excite strong plasma os- cillations on the layer surface. Calculated transmission coefficients show that the resonance wavelength obviously moves toward longer wavelengths as the refractive index of the test medium increases, and a sen- sitivity of 5400 nm/RIU is obtained. Because of its large surface volume ratio and good biocompatibility, graphene map be utilized in many applications in the field of biosensing.  相似文献   

17.
The optical reflectance by a metallic plate arranged with array consisting of subwavelength periodic square hole is investigated by using the three-dimensional finite-difference time-domain method (3D-FDTD). There are dips in the reflectivity spectra, which indicate the absorption peaks. The absorption peaks behave differently according to the ratio of hole width and the period of the hole array. Combined with the near fields of the absorption peaks, it is found that the surface plasmon (SP) resonance on the surface of plate and localized SP in the hole play a major role for the two absorptions.  相似文献   

18.
We investigated the optical properties of hybrid exciton–plasmon coupling ensembles composed of ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution. We modulated their average interval by changing the ratio of quantum dots and Ag nanoparticles. The transition from dramatic PL enhancement to PL quenching state was experimentally observed, according to the continuous decrease of the PL lifetime. The PL enhancement rate exceeded 10, with the Purcell factor of 3.5. Meanwhile, the proportion of fast decay increased from 0.3 to 0.6, corresponding to the proportion of slow decay decreased from 0.7 to 0.4. Our experiment is important for the hybrid exciton–plasmon coupling system to be practicable in optoelectronic application.  相似文献   

19.
One-step precipitation of Ag nanoparticles in Ag+-doped silicate glasses was achieved through a focused picosecond laser with a high repetition rate. Absorption spectra and transmission electron microscopy(TEM) confirmed that metallic Ag nanoparticles were precipitated within glass samples in the laser-written domain. The surface plasmon absorbance fits well with the experimental absorption spectrum. The nonlinear absorption coefficient β is determined to be 2.47 × 10-14 m/W by fitting the open aperture Z-scan curve, which originated from the intraband transition in the s-p Ag band. The formation mechanism of Ag-glass nanocomposites is discussed as well.  相似文献   

20.
潘晖 《中国物理快报》2004,21(1):160-163
Quantum-confinement effects on the binding energy and the linear optical susceptibility of excitons in quantum dots are studied. It is found that the binding energy and the linear optical susceptibility are sensitive to the barrier height and the dot size. For an infinite barrier, the binding energy of excitons decreases monotonically with the increasing dot radius, and the dbsorption intensity has almost the same amplitude with the increasing photon energy. For a finite barrier, the binding energy has a maximum value with the increasing dot radius, and the absorption intensity damps rapidly with the increasing photon energy. The effective mass ratio is also found to have an influence on the binding energy. The results could be confirmed by future experiments on excitons in quantum dots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号