首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recapitulation of systematical investigations of excess enthalpy of mixing in binary mixtures: pyridine base +n-alkane or some of arenes is presented. On the base of experimental results as well as model calculations (PFP, ERAS) the discussion of intermolecular interactions in pyridine bases is given.  相似文献   

2.
3.
4.
It was shown by Claverie that the interactions between atoms and molecules make unphysical electronic solutions of the Schradinger equation accessible in perturbation calculations of intermolecular interactions, accessible in the sense that the perturbation expansion is likely to converge to an unphysical solution if it converges at all. This is a difficult problem because there are generally an infinite number of unphysical states with energies below that of the physical ground state. We have carried out configuration interaction calculations on LiH of both physical and unphysical states. They show that avoided crossings occur between physical and unphysical energy levels as the interaction between the two atoms is turned on, i.e. as the expansion parameter is increased from 0 to 1. The avoided crossing for the lowest energy state occurs for < 0.8, implying that the perturbation expansion will diverge for larger values of . The behavior of the energy levels as functions of . is shown to be understandable in terms of a two-state model. In the remainder of the paper, we concentrate on designing effective Hamiltonians which have physical solutions identical to those of the Schrödinger equation, but which have no unphysical states of lower energy than the physical ground state. We find that we must incorporate ideas from the Hirschfelder-Silbey perturbation theory, as modified by Polymeropoulos and Adams, to arrive finally at an effective Hamiltonian which promises to have the desired properties, namely, that all unphysical states be higher in energy than the physical bound states, that the first and higher order corrections to the energy vanish in the limitR = . that the leading terms of the asymptotic 1/R expansion of the energy be given correctly in second order, and that the overlap between the zeroth order wave function and the corresponding eigenfunction of the effective Hamiltonian be close to one.  相似文献   

5.
The exact microscopic expression for the stress tensor in polymer liquids contains a tensor product of the the segment position vector with the total, intra- plus inter-chain, force acting on the segment. On the other hand, the widely accepted theory of viscoelasticity of polymer melts1) is based on the assumption, that contributions from interchain interactions to the viscosity of polymer melts is negligible relative to the effectively intrachain entropic interactions. Starting from the exact Green-Kubo formula for the viscosity, the Rouse dynamic correlation functions, and Newton's second law, we show that the intrachain assumption is inadequate. Rather, the intrachain and interchain forces acting on polymer segments cancel each other largely. The intrachain contribution therefore cannot be dominant as anticipated in the usual treatment1), or, in other words, the interchain contribution cannot be ignored. The main contribution to viscoelastic properties of polymer melts can only arise from a part of the total stress tensor as already suggested by M. Fixman based on a different argument2). It is concluded that the viscosity is of a purely interchain nature, and is determined by the tensor product of the vector connecting the centers-of-mass of neighboring macromolecules on the one hand, and the total force by which macromolecules interact, on the other, just in the case of simple liquids.  相似文献   

6.
It is shown that the Gibbs vaporization potential G* is additive with respect to molecular groups at all temperatures and it most completely characterizes the intermolecular interactions. The excess entropy of vaporization is identical for all spherical molecules (30 J/mole·K and does not depend on the size of the molecule or the temperature. In long-chain molecules it is additive with respect to the number of links in the chain, varies with temperature, and is equal to the difference between the heat capacities of the gas and liquid and exceeds 30 J/mole·K.Leningrad State Scientific Institute of Industrial Chemistry. Translated from Teoreticheskaya i Éksperimental'naya Khimiya, No. 1, pp. 66–70, January–February, 1991. Original article submitted April 27, 1988.  相似文献   

7.
Abstract

A perturbation expansion of the pair correlation function is used to derive the molecular field self-consistency equations for non-rigid molecules. The order parameters and the thermodynamic functions are expressed directly in terms of the segmental interaction coupling constants. The values of these constants for the 4-n-alkyl-4'-cyanobiphenyis (NCB) are determined by analysing the orientational order parameters observed by N.M.R. in the nematic phase; they are in reasonable agreement with values obtained from calculations of the nematic-isotropic transition temperatures. It is found that contributions of the isotropic intermolecular interactions to the conformational energy of the alkyl chain are comparable in magnitude to the direct intramolecular contributions.  相似文献   

8.
Extreme confinement affects the physical properties of fluids, but little quantitative data is available. We report on studies of a bisurea compound that self-assembles into nanotubes to probe solvent confinement on the angstrom scale. By applying a statistical model to calorimetric data obtained on solvent mixtures, we show that the thermodynamic stability of the nanotubes is an extremely sensitive function of the solvent composition because solvent interactions inside and outside of the nanotubes are different. We are able to measure energetic effects as small as 0.01 kT and relate them to the differences in molecular structure of the solvents.  相似文献   

9.
A perturbation expansion of the pair correlation function is used to derive the molecular field self-consistency equations for non-rigid molecules. The order parameters and the thermodynamic functions are expressed directly in terms of the segmental interaction coupling constants. The values of these constants for the 4-n-alkyl-4'-cyanobiphenyis (NCB) are determined by analysing the orientational order parameters observed by N.M.R. in the nematic phase; they are in reasonable agreement with values obtained from calculations of the nematic-isotropic transition temperatures. It is found that contributions of the isotropic intermolecular interactions to the conformational energy of the alkyl chain are comparable in magnitude to the direct intramolecular contributions.  相似文献   

10.
The propensity of C-F groups to form C-F H-C interactions with C-H groups on other molecules has been analyzed. Crystal structures of molecules containing only carbon, hydrogen, and fluorine, but no oxygen, nitrogen, or other hydrogen-bond-forming elements, were chosen for an initial study in which the intermolecular interactions in crystal-structure determinations of polycyclic aromatic hydrocarbons and their analogous fluoro derivatives were analyzed. It is found that C-F H-C interactions occur, but they are weak, as judged by the intermolecular distances and the angles involved. In a study of crystal structures of molecules containing other elements in addition to carbon, hydrogen, and fluorine, it was found that when an oxygen atom is in a neighboring position on an interacting molecule, a C-O group is more likely than a C-F group to form a linear interaction to the hydrogen atom of a C-H group. Thus, in spite of the high electronegativity of the fluorine atom, a C-F group competes unfavorably with a C-O, C-OH, or C=O group to form a hydrogen bond to an O-H, N-H, or C-H group. It is found, however, particularly for polycyclic aromatic hydrocarbons with substituted CF3 groups that, in the absence of other functional groups that can form stronger interactions, C-F H-C interactions may serve to align molecules and give a different crystal packing from that in the pure hydrocarbon (where fluorine is replaced by hydrogen). Thus, C-F H-X (X = C, N, O) interactions are very weak, much weaker than C=O H-X interactions, but they cannot be ignored in predictions of modes of molecular packing in complexes and in crystals.  相似文献   

11.
12.
13.
14.
A self-consistent perturbation theory is derived in the framework of Roothaan's MOLCAO procedure for closed shell systems. Contrary to previous investigations which have considered only one particle perturbations, two particle perturbation operators are considered. Expressions for the first-order density matrix and first- and second-order energy corrections are obtained. A diagram formulation of the complete perturbation expansion is presented. The results are applied to the treatment of the intermolecular interaction problem. The interaction energy is represented as a sum of several contributions: Coulomb, exchange, resonance, polarization and exchange repulsion. A semi-empirical version of the theory is suggested which explicitly involves all the physically significant energy terms and may be useful for the investigation of complex systems.  相似文献   

15.
Second‐ and third‐order time‐dependent perturbation theory within the multipolar framework of nonrelativistic quantum electrodynamics is used to calculate the retarded dispersion interaction between two diamagnetic molecules, a diamagnetic molecule and a magnetic‐dipole susceptible molecule, and a diamagnetic molecule and an electric‐quadrupole polarizable molecule. New expressions for the energy shift valid for all intermolecular separation distances, R, beyond the region of overlap of molecular electronic wave functions and applicable to a pair of randomly oriented molecules in the ground electronic state are given. The R‐dependent behavior of the far‐zone limit of the interaction energies is also examined. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 437–442, 2000  相似文献   

16.
The development of efficient methods for calculating intermolecular interactions (which are responsible for the existence of stable molecular associates, solvation shells, etc.) is a pressing problem of quantum chemistry. We propose a new method for correct calculations of intermolecular interactions, which is based on the solution of SCF equations with fractional occupation numbers. Calculating intermolecular interactions by this method does not require the use of exchange potentials in an explicit form. The method is intended primarily to describe the charge transfer between interacting subsystems. The calculations by this method are compact since the dimensions of matrix problems remain unchanged in the course of the numerical procedure. V. I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences. Translated fromZhurnal Strukturnoi Khimii, Vol. 36, No. 3, pp. 401–405, May–June, 1995. Translated by I. Izvekova  相似文献   

17.
18.
19.
Intermolecular interactions are of great importance in chemistry but are difficult to model accurately with computational methods. In particular, Hartree-Fock and standard density-functional approximations do not include the physics necessary to properly describe dispersion. These methods are sometimes corrected to account for dispersion by adding a pairwise C6R6 term, with C6 dispersion coefficients dependent on the atoms involved. We present a post-Hartree-Fock model in which C6 coefficients are generated by the instantaneous dipole moment of the exchange hole. This model relies on occupied orbitals only, and involves only one, universal, empirical parameter to limit the dispersion energy at small interatomic separations. The model is extensively tested on isotropic C6 coefficients of 178 intermolecular pairs. It is also applied to the calculation of the geometries and binding energies of 20 intermolecular complexes involving dispersion, dipole-induced dipole, dipole-dipole, and hydrogen-bonding interactions, with remarkably good results.  相似文献   

20.
Nuclear Overhauser effects arising from the interactions of spins of solvent molecules with spins of a solute should reveal the "exposure" of solute spins to collisions with solvent. Such intermolecular NOEs could, therefore, provide information regarding conformation or structure of the solute. Determinations of solute-solvent NOEs of 1,3-di-tert-butylbenzene in solvents composed of perfluoro-tert-butyl alcohol, tetramethylsilane, and carbon tetrachloride have been carried out. A crude, but apparently reliable, method for prediction of intermolecular solvent-solute NOEs based on hard (noninteracting) spheres was developed. Comparison of experimental to predicted NOEs indicates that tetramethylsilane interacts with the solute according to the model. By contrast, intermolecular NOE data indicate attractive interactions between the solute and perfluoro-tert-butyl alcohol. All NOE results and the corresponding predictions confirm that proton H2 of the solute is protected by the flanking tert-butyl groups from interactions with solvent molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号