首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The in vitro activity of a series of ruthenium clusters, [(η6-C6H6)(η6-C6Me6)2Ru3(μ-H)33-O)][BF4], [(η6-C6H6)(η6-1,4-iPrC6H4Me)(η6-C6Me6)Ru3(μ-H)33-O)][BF4], [(η6-C6H6)4Ru4(μ-H)4][BF4]2, [(η6-C6H5Me)4Ru4(μ-H)4][BF4]2 and [(η6-C6H6)4Ru4(μ-H)3(μ-OH)][Cl]2, has been evaluated against A2780 and A2780cisR ovarian carcinoma cell lines. Both triruthenium clusters are very active compared to ruthenium compounds in general, whereas the tetraruthenium clusters do not display significant cytotoxicities. Since the triruthenium clusters are known to form supramolecular interactions with arenes and other functions, it is possible that such interactions are also important with respect to their mode of biological activity. The X-ray structure analysis of [(η6-C6H5Me)4Ru4(μ-H)4][PF6]2 is also reported. Graphical Abstract The in vitro activity of a series of ruthenium clusters has been evaluated against A2780 and A2780cisR ovarian carcinoma cell lines and their activity compared to cisplatin. The triruthenium clusters are very active, while the tetraruthenium clusters do not display significant cytotoxicities. Dedicated to Professor Dieter Fenske on the occasion of his 65th birthday anniversary  相似文献   

2.
Thermolysis of [Ru3(CO)12] in cyclohexene for 24 h affords the complexes [Ru(CO)34-C6H8)] (1), [Ru3H2(CO)92121-C6H8)] (2), [Ru4(CO)124-C6H8)] (3) [Ru4(CO)94-C6H8)(η6-C6H6)] (4a and 4b, two isomers) and [Ru5(CO)1242-C6H8)(η4-C6H8)] (5), where 1, 3, 4a and 4b have been previously characterised as products of the thermolysis of [Ru3(CO)12] with cyclohexa-1,3-diene. The molecular structures of the new clusters 2 and 5 were determined by single-crystal X-ray crystallography, showing that two conformational polymorphs of 5 exist in the solid state, differing in the orientation of the cyclohexa-1,3-diene ligand on a ruthenium vertex.  相似文献   

3.
RuCl2(PTA)4 (PTA=1,3,5-triaza-7-phosphaadamantane) is an active, recyclable, air-stable, aqueous-phase nitrile hydration catalyst. The development of an in situ generated aqueous-phase nitrile hydration catalyst (RuCl3⋅3 H2O+6 equivalents PTA) is reported. The activity of the in situ catalyst is comparable to RuCl2(PTA)4. The effects of [PTA] on the activity of the reaction were investigated: the catalytic activity, in general, increases as the pH goes up, which shows a positive correlation with [PTA]. The pH effects were further explored for both the in situ and RuCl2(PTA)4 catalyzed reaction in phosphate buffer solutions with particular attention given to pH 6.8 buffer. Increased catalytic activity was observed at pH 6.8 versus water for both systems with turnover frequency (TOF) up to 135 h−1 observed for RuCl2(PTA)4 and 64 h−1 for the in situ catalyst. Catalyst loading down to 0.001 mol % was examined with turnover numbers as high as 22 000 reported. Similar to the preformed catalyst, RuCl2(PTA)4, the in situ catalyst could be recycled more than five times without significant loss of activity from either water or pH 6.8 buffer.  相似文献   

4.
In order to realize artificial photosynthetic devices for splitting water to H2 and O2 (2 H2O+→2 H2+O2), it is desirable to use a wider wavelength range of light that extends to a lower energy region of the solar spectrum. Here we report a triruthenium photosensitizer [Ru3(dmbpy)6(μ‐HAT)]6+ (dmbpy=4,4′‐dimethyl‐2,2′‐bipyridine, HAT=1,4,5,8,9,12‐hexaazatriphenylene), which absorbs near‐infrared light up to 800 nm based on its metal‐to‐ligand charge transfer (1MLCT) transition. Importantly, [Ru3(dmbpy)6(μ‐HAT)]6+ is found to be the first example of a photosensitizer which can drive H2 evolution under the illumination of near‐infrared light above 700 nm. The electrochemical and photochemical studies reveal that the reductive quenching within the ion‐pair adducts of [Ru3(dmbpy)6(μ‐HAT)]6+ and ascorbate anions affords a singly reduced form of [Ru3(dmbpy)6(μ‐HAT)]6+, which is used as a reducing equivalent in the subsequent water reduction process.  相似文献   

5.
The reactions of [Fe3(CO)12] or [Ru3(CO)12] with RNC (R=Ph, C6H4OMe-p or CH2SO2C6H4Me-p) have been investigated using electrospray mass spectrometry. Species arising from substitution of up to six ligands were detected for [Fe3(CO)12], but the higher-substituted compounds were too unstable to be isolated. The crystal structure of [Fe3(CO)10(CNPh)2] was determined at 150 and 298 K to show that both isonitrile ligands were trans to each other on the same Fe atom. For [Ru3(CO)12] substitution of up to three COs was found, together with the formation of higher-nuclearity clusters. [Ru4(CO)11(CNPh)3] was structurally characterised and has a spiked-triangular Ru4 core with two of the CNPh ligands coordinated in an unusual μ32 mode.  相似文献   

6.
Treatment of Ru3(CO)12 with an equivalent of (2‐phenyl‐1H ‐inden‐3‐yl)dicyclohexylphosphine ( 1 ) and (2‐pyridyl‐1H ‐inden‐1‐yl)dicyclohexylphosphine ( 4 ) in refluxing heptane gave the novel trinuclear ruthenium clusters (μ3‐η125–2‐phenyl‐3‐Cy2PC9H4)Ru3(CO)8 ( 1c ) and [μ2‐η1–2‐(pyridin‐2‐yl)‐3‐Cy2PC9H6]Ru3(CO)9 ( 4a ), respectively, via C ─ H bond cleavage. (2‐Mesityl‐1H ‐inden‐3‐yl)dicyclohexylphosphine ( 2 ) reacted with Ru3(CO)12 in refluxing heptane to give the trinuclear ruthenium cluster [μ‐2‐mesityl‐(3‐Cy2PC9H5)](μ2‐CO)Ru3(CO)9 ( 2c ) via C ─ H bond cleavage and carbonyl insertion. 2‐(Anthracen‐9‐yl)‐1H –inden‐3‐yldicyclohexylphosphine ( 3 ) reacted with Ru3(CO)12 in refluxing heptane to give the dinuclear ruthenium cluster [μ2‐η33–2‐(anthracen‐9‐yl)‐3‐Cy2PC9H6]Ru2(CO)5 ( 3a ). The structures of 1c , 2c , 3a and 4a were fully characterized using IR and NMR spectroscopy, elemental analysis and single‐crystal X‐ray diffraction. These results suggest that the 2‐aryl substituent on the indenyl ring has a pronounced effect on the reaction and coordination modes of Ru3(CO)12.  相似文献   

7.
Two new disubstituted derivatives of the clusters Rh6(CO)16 and H4Ru4(CO)12 with the heterobidentate ligand [Ph2P(2-CH3SC6H4)] were synthesized. Structures of these compounds were completely characterized both in solid phase and solution. The H4Ru4(CO)10[k2(P,S)-Ph2P(2-CH3SC6H4)] cluster is an example of a structure, in which a chelating coordination of a heterobidentate ligand results in the occurrence of a center of asymmetry associated with the substituted metal atom. This type of polynuclear complexes is of interest for obtaining essentially new catalysts for asymmetric synthesis on the basis of cluster compounds.  相似文献   

8.
The reaction of dodecacarbonyltriruthenium with cinnamaldehyde yielded a mixture of the known H4Ru4(CO)12, H2Ru4(CO)13, and H2Ru6(CO)18, and Ru6C(CO)17 clusters and the 1,1,1,2,2,2,3,3,3-nonacarbonyl-1,2;1,3-(μ3-dihydrido)-1,3-σ;2-π-[μ32-(pheny)vinylidene]triangulotriruthenium complex. The structure of the last-mentioned compound was established by X-ray diffraction study. The mechanism of the reaction and a possible pathway of formation of the vinylidene complex are discussed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1008–1011, May, 1998.  相似文献   

9.
The clusters [Ru4(μ-CO)(CO)1041212-C5H6)2] (1), [Ru4(CO)8441113-C10H12)(μ3321-C5H6)] (2) and [Ru4(CO)10441131-C15H16)] (3) have been prepared from the reaction of [H4Ru4(CO)12] with 1-penten-3-yne. This reaction is observed to proceed with dimerization and trimerization through the triple bonds. The products were characterized spectroscopically by 1H- and 13C-NMR. X-ray crystal structures of compounds 1 and 2 are also described.  相似文献   

10.
The trimetallic clusters [Ru3(CO)10(dppm)], [Ru3(CO)12] and [RuCo2(CO)11] react with a number of multifunctional secondary phosphine and tertiary arsine ligands to give products consequent on carbonyl substitution and, in the case of the secondary phosphines, PH activation. The reaction with the unresolved mixed P/S donor, 1-phenylphosphino-2-thio(ethane), HSCH2CH2PHPh ( LH2), gave two products under various conditions which have been characterised by spectroscopic and crystallographic means. These two complexes [Ru3(μ-dppm)(H)(CO)7(LH)] and [Ru3(μ-dppm)(H)(CO)8(LH)Ru3(μ-dppm)(CO)9], show the versatility of the ligand, with it chelating in the former and bridging two Ru3 units in the latter. The stereogenic centres in the molecules gave rise to complicated spectroscopic data which are consistent with the presence of diastereoisomers. In the case of [Ru3(CO)12] the reaction with LH2 gave a poor yield of a tetranuclear butterfly cluster, [Ru4(CO)10(L)2], in which two of the ligands bridge opposite hinge wingtip bonds of the cluster. A related ligand, HSCH2CH2AsMe(C6H4CH2OMe), reacted with [RuCo2(CO)11] to give a low yield of the heterobimetallic Ru-Co adduct, [RuCo(CO)6(SCH2CH2AsMe(C6H4CH2OMe))], which appears to be the only one of its type so far structurally characterised.The secondary phosphine, HPMe(C6H4(CH2OMe)) and its oxide HP(O)Me(C6H4(CH2OMe)) also react with the cluster [Ru3(CO)10(dppm)] to give carbonyl substitution products, [Ru3(CO)5(dppm)(μ2-PMe(C6H4CH2OMe))4], and [Ru3H(CO)7(dppm)(μ21-P(O)Me(C6H4CH2OMe))]. The former consists of an open Ru3 triangle with four phosphide ligands bridging the metal-metal bonds; the latter has the O atom symmetrically bridging one Ru-Ru bond, the P atom being attached to a non-bridged Ru atom.  相似文献   

11.
The new clusters [H4Ru4(CO)10(μ‐1,2‐P‐P)], [H4Ru4(CO)10(1,1‐P‐P)] and [H4Ru4(CO)11(P‐P)] (P‐P=chiral diphosphine of the ferrocene‐based Josiphos or Walphos ligand families) have been synthesised and characterised. The crystal and molecular structures of eleven clusters reveal that the coordination modes of the diphosphine in the [H4Ru4(CO)10(μ‐1,2‐P‐P)] clusters are different for the Josiphos and the Walphos ligands. The Josiphos ligands bridge a metal–metal bond of the ruthenium tetrahedron in the “conventional” manner, that is, with both phosphine moieties coordinated in equatorial positions relative to a triangular face of the tetrahedron, whereas the phosphine moieties of the Walphos ligands coordinate in one axial and one equatorial position. The differences in the ligand size and the coordination mode between the two types of ligands appear to be reflected in a relative propensity for isomerisation; in solution, the [H4Ru4(CO)10(1,1‐Walphos)] clusters isomerise to the corresponding [H4Ru4(CO)10(μ‐1,2‐Walphos)] clusters, whereas the Josiphos‐containing clusters show no tendency to isomerisation in solution. The clusters have been tested as catalysts for asymmetric hydrogenation of four prochiral α‐unsaturated carboxylic acids and the prochiral methyl ester (E)‐methyl 2‐methylbut‐2‐enoate. High conversion rates (>94 %) and selectivities of product formation were observed for almost all catalysts/catalyst precursors. The observed enantioselectivities were low or nonexistent for the Josiphos‐containing clusters and catalyst (cluster) recovery was low, suggesting that cluster fragmentation takes place. On the other hand, excellent conversion rates (99–100 %), product selectivities (99–100 % in most cases) and good enantioselectivities, reaching 90 % enantiomeric excess (ee) in certain cases, were observed for the Walphos‐containing clusters, and the clusters could be recovered in good yield after completed catalysis. Results from high‐pressure NMR and IR studies, catalyst poisoning tests and comparison of catalytic properties of two [H4Ru4(CO)10(μ‐1,2‐P‐P)] clusters (P‐P=Walphos ligands) with the analogous mononuclear catalysts [Ru(P‐P)(carboxylato)2] suggest that these clusters may be the active catalytic species, or direct precursors of an active catalytic cluster species.  相似文献   

12.
《印度化学会志》2021,98(2):100023
The syntheses, structures and thermal reactions of [Ru3(CO)9{P(C4H3E)3}(μ-dppe)] (2, E = S; 3, E = O; dppe = 1,2-bis(diphenylphosphino)ethane) are described. These triphosphine-substituted clusters can be easily obtained in high yield from the Me3NO initiated room temperature reaction between [Ru3(CO)10(μ-dppe)] (1) and P(C4H3E)3. Both clusters have been structurally characterized which reveals that the functionalized phosphine P(C4H3E)3 is coordinated to the remote ruthenium atom using the phosphorus atom, while the NMR spectroscopic data indicate that both clusters are fluxional in solution mainly due to the ring-flipping process involving the dppe ligand which has been probed by VT NMR spectroscopy. Thermolysis of 2 at 66 °C affords 1 via P(C4H3S)3 dissociation, whilst that of 3 under similar experimental conditions also furnishes the diruthenium σ,π-furyl complex [Ru2(CO)6(μ,η2-C4H3O){μ-P(C4H3O)2] (4) in addition to 1.  相似文献   

13.
Three new triruthenium clusters, Ru3(CO)9(μ‐arphos)AsPh3 ( 1 ), Ru3(CO)9(μ‐arphos)As(m‐C6H4Me)3 ( 2 ), and Ru3(CO)9(μ‐arphos)As(p‐C6H4Me)3 ( 3 ) were synthesized via thermal reactions of Ru3(CO)10(μ‐arphos) with different tertiary arsine ligands [AsPh3, As(m‐C6H4Me)3, As(p‐C6H4Me)3]. All these complexes were fully characterized by elemental analysis, FT‐IR, NMR spectroscopy, and single‐crystal X‐ray diffraction.  相似文献   

14.
The heteronuclear cluster RuOs3(μ-H)2(CO)13 (4) reacts with refluxing toluene to form the clusters Ru2Os3(μ-H)2(CO)16 (5) RuOs3(CO)9(μ-CO)26-C6H5Me) (6) and Ru2Os3(CO)12(μ-CO)(η6-C6H5Me) (7). Cluster 5 exists as a mixture of five isomers. The inter-relationship among the clusters has also been investigated.  相似文献   

15.
By checking the chemistry underlying the concept of “supramolecular cluster catalysis” we identified two major errors in our publications related to this topic, which are essentially due to contamination problems. (1) The conversion of the “closed” cluster cation [H3Ru3(C6H6)(C6Me6)2(O)]+ (1) into the “open” cluster cation [H2Ru3(C6H6)(C6Me6)2(O)(OH)]+ (2), which we had ascribed to a reaction with water in the presence of ethylbenzene is simply an oxidation reaction which occurs in the presence of air. (2) The higher catalytic activity observed with ethylbenzene, which we had erroneously attributed to the “open” cluster cation [H2Ru3(C6H6)(C6Me6)2(O)(OH)]+ (2), was due to the formation of RuO2 · nH2O, caused by a hydroperoxide contamination present in ethylbenzene.  相似文献   

16.
The complex [MnIV(napbh)2] (napbhH2 = N-(2-hydroxynaphthalen-1-yl)methylenebenzoylhydrazide) reacts with activated ruthenium(III) chloride in methanol in 1 : 1.2 molar ratio under reflux, giving heterobimetallic complexes, [MnIV(napbh)2RuIIICl3(H2O)] · [RuIII(napbhH)Cl2(H2O)] reacts with Mn(OAc)2·4H2O in methanol in 1 : 1.2 molar ratio under reflux to give [RuIII(napbhH)Cl2(H2O)MnII(OAc)2]. Replacement of aquo in these heterobimetallic complexes has been observed when the reactions are carried out in the presence of pyridine (py), 3-picoline (3-pic), or 4-picoline (4-pic). The molar conductances for these complexes in DMF indicates 1 : 1 electrolytes. Magnetic moment values suggest that these heterobimetallic complexes contain MnIV and RuIII or RuIII and MnII in the same structural unit. Electronic spectral studies suggest six coordinate metal ions. IR spectra reveal that the napbhH2 ligand coordinates in its enol form to MnIV and bridges to RuIII and in the keto form to RuIII and bridging to MnII.  相似文献   

17.
New chlorido-dimethylsulfoxide-ruthenium(III) complexes with different N6-substituted adenines have been prepared and characterized. Three ruthenium complexes have been structurally characterized by X-ray diffraction crystallography: [RuIIICl4(DMSO)[H-(N6-pentyladenine)]] (1), [RuIIICl4(DMSO)[H-(N6-hexyladenine)]] (2) and [RuIIICl4(DMSO)[H-(N6,N6-dibutyladenine)]] (3). In all cases ruthenium ion show octahedral geometry coordinated to four chlorido ligands and one S coordinated sulfoxide (DMSO). The coordination sphere is completed by an adenine moiety coordinated to Ru(III) via N(9) and protonated at N(3). Other similar complexes have been obtained with N6-propyladenine, [RuIIICl4(DMSO)[H-(N6-propyladenine)]] · 0.5EtOH (4) and N6-benzylaminopurine (BAP) [RuIIICl4(DMSO)[H-(BAP)]] · 0.5H2O (5) which have been spectroscopically characterized. Otherwise, in different reaction conditions, we have obtained an out sphere complex of Ru(II), [H-(BAP)][RuIICl3(DMSO)3] (6), with identical complex unit than the structurally solved [H-(creat)][RuIICl3(DMSO)3] (7) which was included for comparison purposes. Preliminary electrophoretic mobility and atomic force microscopy (AFM) studies of the interaction between Ru(III) compounds and plasmidic DNA pBR322 have been performed. These results show different morphological changes in plasmidic DNA forms.  相似文献   

18.
The reaction of fluorinated fatty acids, perfluorobutyric acid (C3F7CO2H), and perfluorododecanoic acid (C11F23CO2H), with dodecacarbonyltriruthenium (Ru3(CO)12) under reflux in tetrahydrofuran, followed by addition of two-electron donors (L) such as pyridine, 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane, or triphenylphosphine, gives stable diruthenium complexes Ru2(CO)422-O2CC3F7)2(L)2 (1a, L?=?C5H5N; 1b, L?=?PTA; 1c, L?=?PPh3) and Ru2(CO)422-O2CC11F23)2(L)2 (2a, L?=?C5H5N; 2b, L?=?PTA; 2c, L?=?PPh3). The catalytic activity of the complexes for hydrogenation of styrene under supercritical carbon dioxide has been assessed and compared to the analogous triphenylphosphine complexes with non-fluorinated carboxylato groups Ru2(CO)422-O2CC3H7)2(PPh3)2 (3) and Ru2(CO)422-O2CC11H23)2(PPh3)2 (4). In addition, the cytotoxicities of the fluorinated complexes 1 were also evaluated on several human cancer cell lines (A2780, A549, Me300, HeLa). The complexes appear to be moderately cytotoxic, showing greater activity on the Me300 melanoma cells. Single-crystal X-ray structure analyses of 1a and 3 show the typical sawhorse-type arrangement of the diruthenium tetracarbonyl backbone with two bridging carboxylates and two terminal ligands occupying the axial positions.  相似文献   

19.
The X‐ray crystal structure of [RuVI(NMs)2(tmp)] (Ms=SO2p‐MeOC6H4; tmp=5,10,15,20‐tetramesitylporphyrinato(2?)), a metal sulfonylimide complex that can undergo alkene aziridination and C? H bond amination reactions, shows a Ru?N distance of 1.79(3) Å and Ru‐N‐S angle of 162.5(3)°. Density functional theory (DFT) calculations on the electronic structures of [RuVI(NMs)2(tmp)] and model complex [RuVI(NMs)2(por0)] (por0=unsubstituted porphyrinato(2?)) using the M06L functional gave results in agreement with experimental observations. For the amination of ethylbenzene by the singlet ground state of [RuVI(NMs)2(por0)], DFT calculations using the M06L functional revealed an effectively concerted pathway involving rate‐limiting hydrogen atom abstraction without a distinct radical rebound step. The substituent effect on the amination reactivity of ethylbenzene by [RuVI(NX)2(por0)] (X=SO2p‐YC6H4 with Y=MeO, Me, H, Cl, NO2) was examined. Electron‐withdrawing Y groups lower the energy of the LUMOs of [RuVI(NX)2(por0)], thus facilitating their interaction with the low‐lying HOMO of the ethylbenzene C? H bond and hence increasing the reactivity of [RuVI(NX)2(por0)]. DFT calculations on the amination/aziridination reactions of [RuVI(NSO2C6H5)2(por0)] with pent‐4‐enal, an aldehyde substrate bearing acyl, homoallylic, and allylic C? H bonds and a C?C bond, revealed a lower reaction barrier for the amination of the acyl C? H bond than for both the amination of the other C? H bonds and aziridination of the C?C bond in this substrate.  相似文献   

20.
Syntheses and Crystal Structures of New Selenido-bridged Ruthenium Clusters The reaction of Se(SiMe3)2 with [RuCl2(PPh3)3], or a mixture of [RuCl2(PPh3)3] and alkylphosphines leads to the formation of selenido-bridged ruthenium clusters. In this publication the compounds [Ru6Se8(PPh3)6] ( 1 ), [Ru6Se8(PEt3)6] ( 2 ) und[Ru6Se8(PnPr3)6] ( 3 ) are described.The compounds 1-3 contain Ru616+ cluster cores with Ru2+ and Ru3+ centers. The structures of these compounds were elucidated by single crystal X-ray structural analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号