首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of a transient thermal load on a cracked plate are studied experimentally using photothermoelasticity. The three crack configurations of an edge crack, an interior vertical crack and an interior crack inclined at 45 deg are analyzed. In each case, the initially heated plates are subjected to cooling along the edge, while the faces of the plate are either completely insulated, or noninsulated, or in a third case, they are covered with heated transparent Plexiglas plates. It is shown that among the three cracks, the largest transient maximum stress-intensity factor occurs for the edge crack. The inclined crack is subjected to a mixed-mode loading. Among the three cooling conditions, the most severe is the insulated faces case while the noninsulated is the least severe. The relative effect of the cooling conditions on the stress-intensity factors for the three crack types is different enough that the results with one cooling condition would not represent those of another one. A comparison of the experimental transient stress-intensity factors for the vertical crack cases to the finite-element results shows good agreement.  相似文献   

2.
The problem of vibrations of an ice sheet with a rectilinear crack on the surface of an ideal incompressible fluid of finite depth under the action of a time-periodic local load is solved analytically using the Wiener–Hopf technique. Ice cover is simulated by two thin elastic semi-infinite plates of constant thickness. The thickness of the plates may be different on the opposite sides of the crack. Various boundary conditions on the edges of the plates are considered. For the case of contact of plates of the same thickness, a solution in explicit form is obtained. The asymptotics of the deflection of the plates in the far field is studied. It is shown that in the case of contact of two plates of different thickness, predominant directions of wave propagation at an angle to the crack can be identified in the far field. In the case of contact of plates of the same thickness with free edges and with free overlap, an edge waveguide mode propagating along the crack is excited. It is shown that the edge mode propagates with maximum amplitude if the vertical wall is in contact with the plate. Examples of calculations are given.  相似文献   

3.
The fatigue and fracture performance of a cracked plate can be substantially improved by providing patches as reinforcements. The effectiveness of patches is related to the reduction they cause in the stress-intensity factor of the crack. Hence, an accurate evaluation of SIF in terms of various parameters is required for reliable patch design.In this paper, the influence of patch parameters on the opening-mode stress-intensity factor for a plate with a central crack is studied by employing transmission photoelasticity. Cracked plates made of photoelastic material are patched on one side as well as both sides by epoxy, phenolic and E glass-epoxy composite materials. The patch is located on the crack in such a way that the crack tip is not covered. Magnified isochromatic fringes are obtained by using a projection microscope of 50 magnification, converted into a polariscope. Irwin's method with extrapolation is employed to compute the stress-intensity factor from photoelastic data. The reduction in the stress-intensity factor is presented in graphic form as a function of pathch parameters, namely stiffness, width and length.  相似文献   

4.
The photoelastic-coating method was applied to the determination of fracture toughness in aluminum plates. The specimens were plates with a central transverse crack. Determinations were made first by the compliance method. The specimens were loaded statically to failure. The opening displacement across the crack was measured with a clip gage. In using this photoelastic-coating method, the stress-intensity factor was obtained in terms of the radius and fringe order of various isochromatic fringe loops using an extrapolation law. An apparent stress-intensity factor was obtained from several isochromatic fringe patterns away from the crack tip and then extrapolated to the crack tip to determine the true value. Results obtained by the photoelastic-coating method are higher than those obtained by the compliance method for all loads, due to the bluntness of the crack tip in the first set of specimens. Theoretical predictions fall between the compliance method and photoelastic-coating results. Paper was presented at V International Congress on Experimental Mechanics held in Montreal, Quebec, Canada on June 10–15, 1984.  相似文献   

5.
We present an asymptotic algorithm for analysis of a singularly perturbed problem in a domain containing an interfacial crack. The crack is assumed to be flat and its front, initially straight, is perturbed in the plane containing the crack. The aim of the work is to determine the asymptotic representation of the stress-intensity factors near the edge of the crack. Mathematically, the limit problem is reduced to the analysis of a matrix, 3×3, Wiener-Hopf problem, and its solution generates the “weight matrix-function” characterised by a special singular solution near the crack edge. The two-term asymptotic representation for the weight function components is required by the asymptotic algorithm, together with two-term asymptotics for stress components associated with the physical fields near the edge of the crack. The particular feature of the solution is the coupling between the normal opening mode (Mode-I), and the shear modes (Mode-II and Mode-III), and the oscillatory behaviour of certain stress components near the crack edge. Explicit asymptotic formulae for the stress-intensity factors are obtained at the edge of a “wavy crack” at an interface.  相似文献   

6.
The physical occurrence that crack surfaces are in contact at the compressive edges when a flat or a shell is subjected to a bending load has been recognized. This article presents a theoretical analysis of crack–face contact effect on the stress intensity factor of various shell structures such as spherical shell, cylindrical shell containing an axial crack, cylindrical shell containing a circumferential crack and shell with two non-zero curvatures, under a bending load. The formulation of the problem is based on the shear deformation theory, incorporating crack–face contact by introducing distributed force at the compressive edge. Material orthotropy is concerned in this analysis. Three-dimensional finite element analysis (FEA) is conduced to compare with the theoretical solution. It is found that due to curvature effect crack–face contact behavior in shells differs from that in flat plates, in that partial contact of crack surfaces may occur in shells, depending on the shell curvature and the nature of the bending load. Crack–face contact has significant influence on the stress intensity factor and it increases the membrane component but decreases the bending component.  相似文献   

7.
The variation in Mode I stress-intensity factor throughout the thickness of an ASTM standard compact tension specimen was determined using scattered-light speckle interferometry. Two very thin sheets of coincident coherent light traveling in opposite directions were passed through a Plexiglas specimen normal to the crack faces. A double-exposed photograph of the scattered-light speckle pattern was taken while the specimen was subjected to a small load increment. From this double-exposed photograph, the change in the crack-opening displacement could be determined. From the information about the crack-opening displacement in the region of the crack tip, the stress-intensity factor was calculated for various interior planes and on the surface of the specimen. For the compact tension specimen tested, the stress-intensity factor did not vary throughout the specimen's thickness. The method of scattered-light speckle interferometry proved to be very powerful in solving this complex three-dimensional problem.  相似文献   

8.
A 16-spark gap, modified schardin-type camera was constructed for use in dynamic photoelastic analysis of fracturing plastic plates. Using this camera system, dynamic photoelastic patterns in fracturing Homalite-100 plates, 3/8 in. × 10 in. × 15 in. with an effective test area of 10 in. × 10 in., loaded under fixed grip condition were recorded. The loading conditions were adjusted such that crack acceleration, branching, constant velocity, deceleration and arrest were achieved. The Homalite-100 material was calibrated for static and dynamic properties of modulus of elasticity, Poisson's ratio, and stress-optical coefficient. For dynamic calibration, a Hopkinson bar setup was used to record the material response under constant-strain-rate loading conditions. The precise location of the dynamic isochromatic patterns in relation to the crack tip was determined by a scanning microdensitometer. This information was then used to determine dynamic stress-intensity factors which were compared with corresponding static stress-intensity factors determined by the numerical method of direct stiffness. Although the response of the dynamic stress-intensity factor to increasing crack length was similar to the static stress-intensity-factor response, the dynamic values were approximately 40 percent higher than the static values for constant-velocity cracks. for decelerating cracks, the peak values of dynamic stress-intensity factors were 40 percent higher than the corresponding static values.  相似文献   

9.
The paper discusses the scaled-boundary method as applied to electroelastic problems. As an example, the stress-intensity factor is calculated for a thin rectangular piezoelectric plate with an edge crack __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 7, pp. 124–134, July 2006.  相似文献   

10.
The effect of biaxiality of stress on the fatigue-crack-propagation rate in 2024-T351 aluminum alloy in completely reversed bending is investigated. Round and elliptical plates, simply supported at the edge, are subjected to bulge bending. The plate dimensions are such that nominal stress-biaxiality ratios of 1∶1, 1∶0.86 and 1∶0.75 are obtained in the plane of the specimen in the region of its geometric center. It is postulated that, in strain-hardening materials, crack-growth rate is a function of nominal biaxial-stress condition in the crack-tip region. Experimental data for different biaxiality ratios fall in a straight line when a modified stress-intensity factor is plotted against the rate of crack propagation.  相似文献   

11.
Local buckling and fracture of plates with an edge crack under tension are studied. The crack is at an arbitrary angle to the load line. The relationship between the crack-growth initiation stress and the bending strain is established __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 5, pp. 113–116, May 2006.  相似文献   

12.
An application of the Biot’s theory to the diffraction problem of plane harmonic dilatational waves (P-waves) of the first kind and the second kind by a line crack or geometric discontinuity of finite width embedded in a saturated two-phase medium is presented in this paper. The crack surfaces are assumed impermeable, and the integral transform method is utilized to reduce the mixed boundary-value problem to a single Fredholm integral equation. The magnitudes of the intensity of the stress fields near the crack tips measured by Mode I dynamic stress-intensity factor (dimensionless) are computed and displayed graphically against dimensionless circular frequency (ω) for several dimensionless material property values, namely, viscosity-to-permeability and mass density ratios. In the case of the normally incident P-waves of the first kind, the results in terms of stress-intensity factor are also compared with the corresponding values of dry elastic material. All the stress-intensity factor curves are shown to exhibit a similar character in that they rise to the peaks at certain frequency values and then decay with increasing frequencies. At certain frequency ranges and material property values, amplification in the dynamic stress-intensity factor can be substantially larger than those encountered in dry elastic materials. The stress-intensity factor is found to be more affected by the changes in the ratio of viscosity-to-permeability at lower mass density ratio. With fluid mass density 10% of the bulk mass density, the viscosity-to-permeability ratio of 0.01 gives the highest increase of about 32% in the magnitude of stress-intensity factor compared to the dry material counterpart value, while a decrease of about 9% is observed for the viscosity-to-permeability ratio of 100. It is also found that change in mass density ratio has significant effect upon the magnitude of stress-intensity factor at lower ratio of viscosity-to-permeability. As for the normally incident P-waves of the second kind, the presence of the pore fluid affects both the magnitude and character of the stress-intensity factor. Large variations in the magnitude of stress-intensity factor are observed as viscosity-to-permeability ratio changes from 1 to 100. At the ratio of viscosity-to-permeability of 1.0, the stress-intensity factor curves increase gradually with frequency and exhibit the peaks in curves for mass density ratio of 0.3 and higher. As the viscosity-to-permeability ratio is raised to 100, the stress-intensity factor curves increase monotonically with frequency at a much faster rate throughout the frequency range of interest (ω = 0–2), and the change in mass density ratio is shown to have little effect on the stress-intensity factor, especially within the low frequency ranges. The results obtained in this study are useful in the mechanics of fracture initiation of saturated porous materials under the fluctuating mechanical and/or pore fluid loadings that are periodic with time.  相似文献   

13.
Results of static fracture tests on PMMA plates with part-elliptical cracks at fastener holes are presented. Experimental configurations include three crack locations with respect to both open and loaded holes. During static testing, slow growth prior to specimen separation allows for calculation of the maximum stress-intensity factor and identification of the location on the crack border at which it occurs. The testing techniques developed produce a simple, economical means of experimentally validating theoretical analyses of crack problems.  相似文献   

14.
In this paper, stress-intensity factors for a two-dimensional problem are determined. Strips with multiple symmetrical edge cracks in tension are investigated. A simple analytical estimation is compared to numerical results. The influence of penetration of the crack faces and mixed-mode loading on the numerical results is investigated. A simple method to estimate stress-intensity factors for strips with multiple edge cracks is proposed.  相似文献   

15.
The elastostatic problem for a relatively thin-walled spherical cap containing a through crack is considered. The problem is formulated for a specially orthotropic material within the confines of a linearized, shallow shell theory. The theory used is equivalent to Reissner's theory of flat plates and hence permits the consideration of all five physical conditions on the shell boundaries separately. The solution of the problem is reduced to that of a pair of singular integral equations and the asymptotic stress state around the crack tips is investigated. The numerical solution of the problem is given for an isotropic shell and for two specially orthotropic shells. The results indicate that the material orthotropy as well as the shell curvature and thickness may have a considerable effect on the stress intensity factors at the crack tips.  相似文献   

16.
The study of bending of cracked circular cylinders is of more significance. The bending of cylinders containing radical crack or cracks was discussed by refs. [1]–[4] and that of concentrically craked circular cylinders was studied by [5]. Continuing [6] and using complex variable methods in elasticity, this paper deals with the bending problems of a circular cylinder, containing an internal linear crack at any position under an acting force perpendicular to the crack. The general forms of displacements, stresses, and stressintensity factors, expressed in terms of series, are obtained and to this bending problems with small Ah are presented good approximate formulas for the stress-intensity factors whose variations with the center of the crack are analysed. Finally, the twist angle per unit length and the center of bending for the radically cracked circular cylinder, one of whose crack-tips is located at the origin, have been computed and the results are almost the same as that calculated in [1].  相似文献   

17.
The behavior of quasi-isotropic graphite/epoxy laminates with cracks subjected to various biaxial-stress fields was studied experimentally. This was accomplished by uniaxial tensile loading of specimens with cracks of various orientations with the loading axis. It was found that the critical stress-intensity factor, based on a projected crack length increased by a characteristic damage dimension, is nearly constant with stress biaxiality and initial crack length. Paper was presented at V International Congress on Experimental Mechanics held in Montreal, Quebec, Canada on June 10–15, 1984.  相似文献   

18.
The governing equations for determination of dynamic stress-intensity factor at the tip of a running crack are developed from a dynamic analysis of dynamic isopachicfringe patterns. The equations are applied to investigate dynamic crack propagation in Homalite 100 by means of dynamic holographic interferometry. A simple method based on simultaneous measurement of the widths of two isopachics allows determination of Irwin's additional stress field, and a dynamic correction function for the stress-intensity factor is derived. It was found that dynamicK-values obtained from dynamic isopachic-fringe-pattern analysis are lower than their corresponding static values. This implies a modification of the crack velocity vs. stress-intensity-factor relationship towards lower values ofK for dynamic crack propagation.  相似文献   

19.
The elastostatic plane problem of a layered composite containing an internal or edge crack perpendicular to its boundaries in its lower layer is considered. The layered composite consists of two elastic layers having different elastic constants and heights and rests on two simple supports. Solution of the problem is obtained by superposition of solutions for the following two problems: The layered composite subjected to a concentrated load through a rigid rectangular stamp without a crack and the layered composite having a crack whose surface is subjected to the opposite of the stress distribution obtained from the solution of the first problem. Using theory of Elasticity and Fourier transform technique, the problem is formulated in terms of two singular integral equations. Solving these integral equations numerically by making use of Gauss–Chebyshev integration, numerical results related to the normal stress σx(0,y), the stress-intensity factors, and the crack opening displacements are presented and shown graphically for various dimensionless quantities.  相似文献   

20.
A horizontally polarized step-stress wave is incident on a semi-infinite crack in an elastic solid. At the instant that the crack tip is struck, the crack starts to propagate in the forward direction, but under an angle κπ with the plane of the original crack. In this paper a self-similar solution is obtained for the particle velocity of the diffracted cylindrical wave field. The use of Chaplygin's transformation reduces the problem to the solution of Laplace's equation in a semi-infinite strip containing a slit. The Schwarz-Christoffel transformation is employed to map the semi-infinite strip on a half-plane. An analytic function in the half-plane which satisfies appropriate conditions along the real axis, can subsequently be constructed. The Mode-III stress-intensity factor at the tip of the kinked crack has been computed for angles of incidence varying from normal to grazing incidence, for angles of crack kinking defined by -0.5?κ?0.5, and for arbitrary subsonic crack tip speeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号