首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We overview recent achievements in the field of cryogenic submillimeter-wave receivers based on superconductor–insulator–superconductor (SIS) tunnel junctions. The main attention is paid to the novel superconducting integrated receivers (SIRs) with an on-chip superconducting local oscillator. The single-chip microcircuit of the receiver, which integrates a quantum mixer based on the nonlinearity of a quasi-particle current in the SIS junction, a planar superconducting receiving antenna, and a cryogenic local oscillator, is described. Being dc-powered only by batteries, such a microcircuit operates as a submillimeter-wave superheterodyne receiver without any additional microwave equipment. Such receivers are very attractive for radioastronomical research, space communication systems, and monitoring of the environment from satellites, balloons, and special aircraft. A breadboard of a superconducting spectrometer with a phase-locked flux-flow oscillator (FFO) has been developed and tested. A frequency resolution better than 10 kHz was reached at a frequency of 365 GHz. We describe a balloon-borne 500-650 GHz integrated spectrometer for oblique atmospheric sounding, developed for the international Terahertz Limb Sounder (TELIS) project. The first flight is scheduled for 2005.  相似文献   

2.
We present the latest results of developing and implementing a fully superconducting integrated receiver of the submillimeter-wave range on the basis of the superconductor-insulator-superconductor tunnel junction. Characteristics of a new-generation unique device operated in the frequency range 500–600 GHz and intended for atmospheric research onboard a high-altitude balloon within the framework of the international TELIS project are given. This frequency range comprises spectral lines of many chlorine-containing compounds, the registration of which is a major problem of the environmental monitoring of the atmosphere. In the process of creating the spectrometer, we developed the technology for manufacturing Nb/AlN/NbN junctions, which made it possible to reduce the emission linewidth of the superconducting local oscillator based on the long Josephson junction and decrease the noise temperature of the receiver. At the same time, the possibility to continuously tune the local-oscillator frequency in the entire operating range was realized.  相似文献   

3.
A spectrometer based on the effect of freely decaying polarization in the frequency range 500–700 GHz has been designed. Radiation sources are harmonics from a quantum semiconductor superlattice frequency multiplier. The receiving system of this spectrometer is constructed using a superconducting integrated receiver based on a superconductor-insulator-superconductor mixer and a flux-flow oscillator operating as a heterodyne oscillator. The spectrometer has been used to measure absorption lines of NH3 in a sample of expired air (572 GHz).  相似文献   

4.
EMCOR is a heterodyne receiver for the frequency range of 201 to 210 GHz. It has been designed for ground-based measurements of various minor constituents of the stratosphere involved in ozone chemistry. Since the aim was the detection of faint spectral lines, a superconducting tunnel junction has been chosen as mixer element and special care has been taken in developing the calibration unit of the system. The front-end is completed by a quasi-optical system, a solid state local oscillator with electronic tuning and a HEMT pre-amplifier. In the back-end an acousto-optical spectrometer is employed to analyse the signal. A PC controls the whole system. The instrument has been installed at a high mountain site in the Swiss Alps.  相似文献   

5.
The paper describes an uncooled front-end of the Schottky diode receiver system, which may be applied for observations of middle atmospheric ozone and carbon monoxide thermal emission lines at frequencies 110.8 GHz and 115.3 GHz, respectively. The mixer of the front-end has utilized high-quality Schottky diodes that allowed us to reduce the mixer conversion loss. The combination of the mixer and an ultra-low-noise IF amplifier in the one integrated unit has resulted in double-sideband (DSB) receiver noise temperature of 260 K at a local oscillator (LO) frequency of 113.05 GHz in the instantaneous IF band from 1.7 to 2.7 GHz. This is the lowest noise temperature ever reported for an uncooled ozone receiver system with Schottky diode mixers.  相似文献   

6.
Planar Schottky diodes are integrated with bow-tie antennas to form a one-dimensional array. The energy is focused onto the antennas through a silicon lens placed on the back of the gallium-arsenide substrate. A polystyrene cap on the silicon lens reduces the reflection loss. A self-aligning process with proton isolation has been developed to make the planar Schottky diodes with a 1.1-THz zero-bias cutoff frequency. The antenna coupling efficiency and imaging properties of the system are studied by video detection measurements at 94 GHz. As a heterodyne receiver, a double-sideband mixer conversion loss of 11.2 dB and noise temperature of 3770°K have been achieved at a local oscillator frequency of 91 GHz. Of this loss, 6.2 dB is attributed to the optical system and the antenna.  相似文献   

7.
The UCB/MPE Submillimeter Heterodyne Spectrometer is a system for ascronomical spectroscopy in the high-frequency atmospheric windows from 500 to 1000 GHz. It contains a molecular laser local oscillator, a cooled Schottky open structure mixer, a quasi-optical coupling system, and an acousto-optical spectrometer. The compact receiver mounts at the Cassegrain focus of large infrared astronomical telescopes. The receiver noise temperature on the telescope is approximately 3500 K (DSB) during observations of the CO J=76 line at 806.652 GHz. The spectrometer's frequency resolution and instantaneous bandwidth (<2 MHz resolution across 1.1 GHz) are well suited for observations of molecular emission lines from a variety of astronomical sources.  相似文献   

8.
A superconducting low-noise receiver has been developed for atmospheric observations in the 650-GHz band. A waveguide-type tunerless mixer mount was designed based on one for the 200-GHz band. Two niobium SIS (superconductor-insulator-superconductor) junctions were connected by a tuning inductance to cancel the junction capacitance. We designed the RnCj product to be 8 and the current density to be 5.5 kA/cm2. The measured receiver noise temperature in DSB was 126-259 K in the frequency range of 618-660 GHz at an IF of 5.2 GHz, and that in the IF band (5-7 GHz) was 126-167 K at 621 GHz. Direct detection measurements using a Fourier transform spectrometer (FTS) showed the frequency response of the SIS mixer to be in the range of about 500-700 GHz. The fractional bandwidth was about 14%. The SIS receiver will be installed in a balloon-borne limb-emission sounder that will be launched from Sanriku Balloon Center in Japan.  相似文献   

9.
A heterodyne receiver is described in which an InSb hot electron bolometer is used as a mixer. The local oscillator power is obtained by doubling the frequency of a backward wave oscillator. The receiver operates between 460 and 500 GHz (0.65–0.6 mm). Noise temperatures amount typically to 1000 K.  相似文献   

10.
    
A heterodyne waveguide receiver employing 1 µm2 Nb superconducting tunnel junctions with on chip integrated tuning structures is characterized from 680–760 GHz. Several different types of integrated tuning structures are investigated. Lowest DSB receiver noise temperatures of 310 K at 709 GHz and 400 K at 720 GHz are measured. Analysis of the data shows that the loss of the superconducting tuning structures has a major influence on the overall receiver performance. A 25% reduction in receiver noise temperature is observed if the mixer is cooled from 4.2 K to 2 K, which we attribute to the reduced loss of the superconducting microstrip lines at lower temperatures. The calculated performance of the different tuning structures is shown to be in good agreement with the actual receiver noise measurements.  相似文献   

11.
In this report we present the performance and test observation results of a waveguide band-stop filter (BSF) as an image rejection filter for the measurement of stratospheric ozone. By using the waveguide BSF, we are able to adopt a very simple optical system and achieve a good image rejection ratio. Additionally, we are able to observe in both single sideband (SSB) mode and double sideband (DSB) mode by only changing the local oscillator (LO) frequency. We have installed the waveguide BSF into an atmospheric ozone-measuring system using a superconductive (SIS) receiver and have successfully observed an ozone spectrum at 110 GHz in SSB and DSB mode. The receiver noise temperature (SSB) and the image rejection ratio at 110 GHz are about 60 K and more than 30 dB, respectively.Because of the IF power ripple, the waveguide BSF cannot be used with a wide-band spectrometer. However, it is quite practical for narrow-band observation.  相似文献   

12.
Source power for laboratory-type experiments is often limited at millimeter and submillimeter wavelengths. This requires the use of sensitive receiving equipment. Cooled square-law detectors and narrowband heterodyne detectors are examples. We have developed a coherent mechanical frequency shifter, which makes possible narrowband heterodyne detection without the need for highly frequency stable sources. Identical frequency and phase fluctuations of the transmit and local oscillator signals derived from one source are eliminated at the intermediate frequency. The widely tunable frequency shifter, designed for a 637GHz scale-model radar, was tested in a 140GHz non-radar configuration. We investigated the receiver's minimum coherently resolvable bandwidth and its sensitivity. Several types of sources were compared for the effect of local oscillator amplitude noise on receiver sensitivity at low intermediate frequency.  相似文献   

13.
A compact, solid state submillimeter-wave heterodyne radiometer has been developed and was used to measure spectral characteristics of a water vapor jet in a space simulation chamber. Features of the 557 GHz water vapor line profile were observed in significantly greater detail than in previous experiments through an increased sensitivity and improved frequency resolution (600 kHz). The local oscillator of the radiometer consisted of a frequency multiplication chain which was driven by an InP Gunn oscillator at 92.6 GHz, and which contained a frequency tripler and harmonic mixer in cascade. The front end of the receiver had a noise temperature of 4500 K (DSB) at 555 GHz, consumed 3 W and weighed 3 kg. This advance in technology is particularly relevant to submillimeter-wave radiometry from a space-based platform.  相似文献   

14.
The performance of a submillimeter heterodyne receiver using an HCOOH laser local oscillator and an open structure mixer with a Schottky barrier diode has been optimized for 693 GHz. Working at room temperature a single sideband (SSB) system noise temperature of 7,300 K, a mixer noise temperature of 6,100 K and a conversion loss of 12 dB has been achieved. The same receiver system has been investigated at 324 GHz using an HCOOD laser local oscillator yielding a noise temperature of 3,100 K (SSB), a mixer noise temperature of 2,400 K (SSB) and a conversion loss of 10 dB (SSB). An acousto-optical spectrometer has also been constructed, with 1024 channels and a channel-bandwidth of 250 kHz. The system NEP per channel was 2.5×10–17 W/Hz1/2 at 324 GHz and 5.0×10–17 W/Hz1/2 at 693 GHz.  相似文献   

15.
16.
The integration of many receiver units into a receiver array is a common method of improvement of imaging systems. This approach, well known in the mm band for Schottky mixer arrays, has not so far been developed for Superconductor - Insulator - Superconductor (SIS) junction mixers, which give the best sensitivity in the short mm wave range and in the submm range.We demonstrate for the first time a practical low noise multibeam receiver module using SIS mixer technology. The basis for the integration of several SIS mixers with a common local oscillator source is given by the saturation of the SIS receiver noise dependence upon local oscillator power. The module comprises three identical SIS mixers integrated with a common local oscillator, coupled through a three branch waveguide directional coupler. The multibeam module has been developed for a focal plane array receiver of the 30 meter radio telescope of the Institut de Radioastronomie Millimétrique (IRAM).  相似文献   

17.
A quasi-optical mixer containing two Nb/Al/AlOx/Nb superconducting tunnel junctions integrated into a NbTiN/SiO2/Al microstrip line is studied experimentally in the 800–1000 GHz frequency range. The mixer is developed as an optional front end of the heterodyne receiver operating in frequency band 3 or 4 and incorporated into the HIFI module of the Herschel space-borne telescope. The double-dipole antenna of the mixer is made of NbTiN and Al films; the quarter-wavelength reflector, of a Nb film. The mixer is optimized for the IF band of 4–8 GHz. The double-sideband noise temperature T RX measured at 935 GHz is 250 K at a mixer temperature of 2 K and an IF of 1.5 GHz. Within 850–1000 GHz, T RX remains below 350 K. The antenna pattern is symmetrical with a sidelobe level below −16 dB.  相似文献   

18.
We have developed a niobium titanium nitride (NbTiN) based superconductor-insulator-superconductor (SIS) receiver to cover the 350 micron atmospheric window. This frequency band lies entirely above the energy gap of niobium (700 GHz), a commonly used SIS superconductor. The instrument uses an open structure twin-slot SIS mixer that consists of two Nb/AlN/NbTiN tunnel junctions, NbTiN thin-film microstrip tuning elements, and a NbTiN ground plane. The optical configuration is very similar to the 850 GHz waveguide receiver that was installed at the Caltech Submillimeter Observatory (CSO) in 1997. To minimize front-end loss, we employed reflecting optics and a cooled beamsplitter at 4 K. The instrument has an uncorrected receiver noise temperature of 205K DSB at 800 GHz and 410K DSB at 900 GHz. The degradation in receiver sensitivity with frequency is primarily due to an increase in the mixer conversion loss, which is attributed to the mismatch between the SIS junction and the twin-slot antenna impedance. The overall system performance has been confirmed through its use at the telescope to detect a wealth of new spectroscopic lines.  相似文献   

19.
The design of a 50 Hz single longitudinal mode, diode-pumped and frequency-tripled Nd:YAG master oscillator power amplifier is described, and the first measurements of output parameters are presented. The laser oscillator is injection-seeded by a tuneable monolithic Nd:YAG ring laser and frequency stabilized by minimising the Q-switch build-up time. The laser system will be an integral part of an airborne instrument demonstrator for a first satellite based Doppler wind lidar to measure vertical profiles of one component of the atmospheric wind vector. This paper focuses on the investigation of the frequency jitter and the linewidth of the laser, which are measured on a pulse-to-pulse basis. For this purpose a compact, high accuracy beat frequency monitoring system has been developed at DLR. By operating the amplifier stage at half the repetition rate (50 Hz) of the oscillator, we could reduce the frequency stability from 10 MHz (rms) to 1.3 MHz (rms) (over a 14 s period). We have determined a mean linewidth of 15 MHz (FWHM) at 1064 nm. These measured laser parameters enable wind velocity measurements in the atmosphere (0–15 km) at an accuracy of 1 to 2 m/s. PACS 42.55.Xi; 42.60.Lh; 42.68.Wt  相似文献   

20.
Millimeter and submillimeter-wave observations provide important information for the studies of atmospheric chemistry and astrochemistry (molecular clouds, stars formation, galactic study, comets and cosmology). But, these observations depend strongly on instrumentation techniques and on the site quality. New techniques or higher detector performances result in unprecedented observations and, sometimes, the observational needs drive developments of new detector technologies, for example, superconducting junctions (SIS mixers) because of their high sensitivity in heterodyne detection in the millimeter and submillimeter wave range (100–700 GHz), HEB (Hot Electron Bolometer) mixers which are being developed by several groups for application in THz observations. For the sub-millimetre wavelengths heterodyne receivers, the local oscillator (LO) is still a critical element. So far, solid state fundamental sources are often not powerful enough for most of the applications at millimetre or submillimetre wavelengths: large efforts using new planar components (HBV) and integrated circuits, or new technics (laser mixing) are now in progress, in a few groups.The new large projects as SOFIA, FIRST, ALMA, … for astronomy; SMILES, EOS-MLS, … for aeronomy and other projects for the planetary science (ROSETTA, Mars Explorer, …), will benefit of the new developments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号