首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The molecular aspect of the Raman vibrational selection rules allows for the molecular structural and reactivity determinations of metal oxide catalytic active sites in all types of oxide catalyst systems (supported metal oxides, zeolites, layered hydroxides, polyoxometalates (POMs), bulk pure metal oxides, bulk mixed oxides and mixed oxide solid solutions). The molecular structural and reactivity determinations of metal oxide catalytic active sites are greatly facilitated by the use of isotopically labeled molecules. The ability of Raman spectroscopy to (1) operate in all phases (liquid, solid, gas and their mixtures), (2) operate over a very wide temperature (-273 to >1000 °C) and pressure (UHV to ?100 atm) range, and (3) provide molecular level information about metal oxides makes Raman spectroscopy the most informative characterization technique for understanding the molecular structure and surface chemistry of the catalytic active sites present in metal oxide heterogeneous catalysts. The recent use of hyphenated Raman spectroscopy instrumentation (e.g., Raman-IR, Raman-UV-vis, Raman-EPR) and the operando Raman spectroscopy methodology (e.g., Raman-MS and Raman-GC) is allowing for the establishment of direct structure-activity/selectivity relationships that will have a significant impact on catalysis science in this decade. Consequently, this critical review will show the growth in the use of Raman spectroscopy in heterogeneous catalysis research, for metal oxides as well as metals, is poised to continue to exponentially grow in the coming years (173 references).  相似文献   

2.
Understanding the degradation behavior of polymeric microspheres is crucial for the successful application of such devices in controlled drug delivery. The degradation mechanism of poly(lactic-co-glycolic acid) (PLGA) microspheres inside phagocytic cells is not known, but different models for degradation in aqueous solution have been proposed. We have used confocal Raman spectroscopy and imaging to study the intracellular degradation of PLGA microspheres inside individual macrophages. Our results show that ingested microspheres degrade in a heterogeneous manner, with a more rapid degradation in the center. Comparison of Raman spectra from degrading beads with those of uningested beads reveals that ester hydrolysis occurs throughout the phagocytosed microspheres, with a selective loss of glycolic acid units. Furthermore, we show that PLGA degradation is a cell-mediated process, possibly caused by the low pH of the phagosome and/or the presence of hydrolytic enzymes. In conclusion, we have demonstrated that the chemical composition of degrading polymers inside cells can be probed by Raman spectral imaging. This technique will expand the capabilities of investigating biomaterial degradation in vivo.  相似文献   

3.
In this review the basis, recent developments and applications of coherent anti-Stokes Raman scattering (CARS) in the fields of spectroscopy and microscopy are dialed with. The nonlinear susceptibility of the investigated molecule induced by pump and Stokes laser beams employed in the CARS technique is discussed. The relation between the nonlinear susceptibility, the different CARS laser intensities and the phase matching condition between them is also presented. The structure of CARS spectrum is analyzed as a function of the physical characteristics of the different employed lasers. This includes laser half widths, interference effects, cross-coherence and saturation of the resultant CARS signal by stimulated Raman scatter process (SRS). The different broadening mechanisms for CARS spectral line such as pressure and Doppler broadening are demonstrated. The recent progress in CARS for the in situ reaction flame diagnosis due to its suitability for detection of vibrational-rotational excited gas molecules present in the electronic ground state is discussed. CARS diagnosis for liquid- and solid-phases including the progress in polymeric materials is considered. The applications of CARS microscopy are reviewed in the view of its recent advances to study chemical and biological systems.  相似文献   

4.
在过去的近十年中,各种新型原位表征技术和反应器设计被应用于多相催化过程和催化材料的合成研究中,并获得了许多新认识.特别是最近几年,利用原位、共振拉曼光谱技术对分子筛合成关键物种检测、杂原子分子筛催化活性位的研究取得了一系列进展.这些技术的应用使得从分子水平认识复杂的多孔材料成为可能:从合成初期碎片基元检测、碎片相互连接的关键化学键到预组装类微孔结构;从高度隔离过渡金属中心到配位化学键断裂生成活性中间物种,再到完成催化反应循环.这为设计特定功能和结构的催化材料及高选择性的活性中心奠定了坚实的基础.  相似文献   

5.
We report surprising surface-induced torsional alignment of polydimethylsiloxane (PDMS) chains in contact with the muscovite (001) mica surface with and without confinement. The alignment was measured by polarized confocal Raman spectroscopy over diffraction-limit circular spots with approximately 0.3 microm diameter. Our discussion here focuses on the intense symmetric methyl-group vibration centered at 2907 cm(-1), whose Raman scattering intensity is found to depend on whether incident light is polarized in the x or y direction of the surface, the x direction being parallel to one of the mica optical axes. Furthermore, the Raman peak broadens significantly relative to that of bulk PDMS while remaining Lorentzian in shape, implying slower but homogeneous vibrational dephasing. However, the preferred orientation differs, apparently stochastically, from spot to spot on the surface. Possible origins of this heterogeneous surface-induced structure are discussed.  相似文献   

6.
The temperature dependence Raman spectra of two liquid crystalline compounds defined by the chemical formula of 3,5-difluoro-4?-(4-pentylcyclohexyl)-(1,1?-biphenyl)-4-carbonitrile and 3,4,5-trifluoro-4?-(4-pentylcyclohexyl)-1,1?-biphenyl is being first reported in this study. These compounds are bent-core monomers and their bent nature has been verified by the Density Functional Theory (DFT). The temperature-dependent Raman spectroscopy has been widely used in understanding the effects of temperature-based phase transitions on the molecular vibrations. The same spectroscopic technique; helps to understand various phase transitions temperature in the liquid crystalline compounds (LC) and also their molecular arrangements during the phase transitions. This study has successfully revealed the nature of intermolecular interactions between the investigated compounds during the phase transitions and the correlation between the observed Raman spectra and the measurement temperature. The contributions of different types of chemical bonds in the investigated LC compounds to their recorded Raman spectra have also been discussed in detail. In predicting the observed Raman spectra, the theoretical Raman spectra obtained from the DFT calculation was used as a reliable tool. In the light of the calculated data, the peak position, line width, and integral intensity data for each band in the observed Raman spectra were reported.  相似文献   

7.
The laser Raman phonon spectroscopic technique has been used to study the photopolymerization reaction of 1,4 bis[β-pyridyl(2)vinyl] benzene (P2VB). Raman and infrared spectroscopy have been used to study the intramolecular vibrations of the reactant and the product and to characterize them. Absence of any large Stokes' shift between absorption and emission bands of the monomer crystal shows that exciton–phonon coupling is weak, and the reaction is not likely to be phonon mediated. Phonon spectroscopy shows that the reaction proceeds by a heterogeneous mechanism. Sharp phonon bands of the product, however, suggests that the photopoly P2VB lattice is highly ordered.  相似文献   

8.
The aggregation of casein micelles (CMs) induced by milk-clotting enzymes is a process of fundamental importance in the dairy industry for cheese production; however, it is not well characterized on the nanoscale. Here we enabled the monitoring of the kinetics of aggregation between single CMs (30-600 nm in diameter) by immobilizing them on a glass substrate at low densities and subsequently imaging them with fluorescence microscopy. We validated the new method by a quantitative comparison to ensemble measurements of aggregation. Single-particle statistics allowed us to observe for the first time several heterogeneities in CM aggregation. We observed two types of CM growth: a slow increase in the size of CMs and a stepwise increase attributed to interactions between aggregates preformed in solution. Both types of growth exhibit a lag phase that was very heterogeneous between different CMs, suggesting significant differences in their composition or structure. Detailed size histograms of CMs during aggregation also revealed the presence of two distinct subpopulations with different growth amplitudes and kinetics. The dependence of these distinct nanoscale processes/parameters on aggregation conditions is not accessible to bulk measurements that report only ensemble-average values and may prove important to an in-depth understanding of CM aggregation.  相似文献   

9.
Two different data-fusion strategies are evaluated for the combination of the outputs of combined Raman/X-Ray fluorescence instrument. The studied application deals with the classification of ochre pigments investigated in the field of cultural heritage. The two fusion strategies are: (1) first level fusion: combines raw signals obtained from each technique and (2) second level fusion: combines extracted features provided individually by each technique. Classification tool is partial least squares-discriminant analysis (PLS-DA). Classification results obtained performing different data-fusion strategies are compared with those results obtained performing a single classification model for each data source. The results show that the combination of signal features is the most suitable for a rapid and unique processing of both types of spectra. Benefits and drawbacks of each strategy are also discussed.  相似文献   

10.
Two-photon-resonant hyper-Raman spectra are reported for three "push-pull" conjugated organic chromophores bearing -NO(2) acceptor groups, two dipolar and one octupolar. The excitation source is an unamplified picosecond mode-locked Ti:sapphire laser tunable from 720 to 950 nm. The linear resonance Raman spectra of the same molecules are measured using excitation from the laser second harmonic. Excitation on resonance with the lowest-lying band in the linear absorption spectrum yields nearly identical resonance Raman and resonance hyper-Raman spectra. However, excitation into a region that appears to contain more than one electronic transition gives rise to different intensity patterns in the linear and nonlinear spectra, indicating that different transitions contribute differently to the one-photon and two-photon oscillator strength. The promise of the hyper-Raman technique for examining electronic transitions that are both one- and two-photon allowed is discussed.  相似文献   

11.
The development of a classification system based on the Raman spectra of milk samples is proposed in present study. Such development could be useful for nutritionists in suggesting healthy food to infants for their proper growth. Previously, molecular structures in milk samples have been exploited by Raman spectroscopy. In the current study, Raman spectral data of milk samples of different species is utilized for multi-class classification using a dimensionality reduction technique in combination with random forest (RF) classifier. Quantitative and experimental analysis is based on locally collected milk samples of different species including cow, buffalo, goat and human. This classification is based on the variations (different concentrations of the components present in milk such as proteins, milk fats, lactose etc.) in the intensities of Raman peaks of milk samples. Principal component analysis (PCA) is used as a dimensionality reduction technique in combination with RF to highlight the variations which can differentiate the Raman spectra of milk samples from different species. The proposed technique has demonstrated sufficient potential to be used for differentiation between milk samples of different species as the average accuracy of about 93.7%, precision of about 94%, specificity of about 97% and sensitivity of about 93% has been achieved.  相似文献   

12.
Near-infrared (NIR) Raman spectroscopy was used to measure spectra of dried human blood samples from multiple donors. Two major questions addressed in this paper involve the influence of sample heterogeneity and potential Raman spectral variations that could arise between different donors of blood. Advanced statistical analysis of spectra obtained from multiple spots on dry samples showed that dry blood is chemically heterogeneous, and its Raman spectra could be presented very well as a linear combination of a fluorescent background and two Raman spectroscopic components that are dominated by hemoglobin and fibrin, respectively. Each sample Raman spectrum contains the same major peaks, but the relative contribution of the hemoglobin and fibrin components varies with the donor. Therefore, no single spectrum could adequately represent an experimental Raman spectrum of dry blood in a quantitative way, but rather the combination of hemoglobin and fibrin spectral components could be considered to be a spectroscopic signature for blood. This proof-of-concept approach shows the potential for Raman spectroscopy to be used in forensic analysis to identify an unknown substance such as blood.  相似文献   

13.
《Chemical physics letters》2002,350(3-4):274-278
Raman imaging is known to be an efficient tool to localize different chemical species in a sample. Nevertheless, the signature of a minor compound is hard to retrieve in a dense heterogeneous sample. This paper aims at demonstrating that Raman imaging used in a hyperspectral configuration is still a very efficient tool to extract the signature of traces in heterogeneous samples, if the sample is diluted. It opens the way to study chemical co-localization in the case of minor compounds. This possibility is illustrated in the case of perylene-doped single-wall nanotubes (SWNTs).  相似文献   

14.
表面增强拉曼光谱:应用和发展   总被引:2,自引:0,他引:2  
表面增强拉曼光谱技术(Surface-enhanced Raman spectroscopy,SERS)是一种具有超高灵敏度的指纹光谱技术,目前已广泛应用于表面科学、材料科学、生物医学、药物分析、食品安全、环境检测等领域,是一种极具潜力的痕量分析技术。 本文对SERS技术及相关的针尖增强拉曼光谱(Tip-enhanced Raman spectroscopy,TERS),壳层隔绝纳米粒子增强拉曼光谱(Shell-isolated nanoparticle-enhanced Raman spectroscopy,SHINERS)技术的发展及应用进行了综合评述,并探讨了其未来的研究热点及发展方向。  相似文献   

15.
吴自力 《催化学报》2014,35(10):1591-1608
探究负载金属氧化物的结构是确立催化剂结构和催化性能之间相互关系的首要条件. 在众多表征技术中,多波长拉曼光谱结合了共振拉曼和由不同波长激发的非共振拉曼,不仅在识别负载金属氧化物团簇的结构,而且在定量方面已经成为强有力的工具. 本文以两个负载氧化钒体系(VOx/SiO2,VOx/CeO2)为例,阐述了如何利用该技术研究活性氧化物团簇的多相结构,并理解氧化物团簇和载体之间复杂的相互作用. 由多波长拉曼光谱得到的定性和定量信息能为设计更有效的负载金属氧化物催化剂提供基本的依据.  相似文献   

16.
Recently, Raman spectroscopy become a popular and potential analytical technique for the analysis of pharmaceuticals as a result of its advancement. The innovation of laser technology, Fourier Transform-Raman spectrometers with charge coupled device (CCD) detectors, ease of sample preparation and handling, mitigation of sub-sampling problems using different geometric laser irradiance patterns and invention of different optical components of Raman spectrometers are contributors of the advancement of Raman spectroscopy. Transmission Raman Spectroscopy is a useful tool in pharmaceutical analysis to address the problems related with sub-sampling in conventional Raman back scattering. More importantly, the development of surface-enhanced Raman scattering (SERS) has been a prominent advancement for Raman spectroscopy to be applied for pharmaceuticals analysis as it avoids the inherent insensitivity and fluorescence problems. As the active pharmaceutical ingredients (APIs) contain aromatic or conjugated domains with strong Raman scattering activity, Raman spectroscopy is an attractive alternative conventional analytical method for pharmaceuticals. Coupling of Raman spectroscopy with separation techniques is also another advancement applied to reduce or avoid possible spectral interferences. Therefore, in this review, transmission Raman spectroscopy, SERS, and SERS coupled with various separation techniques for pharmaceutical analysis are presented.  相似文献   

17.
We report on the great advantages of using deep UV Raman system for in situ planetary applications. Among them are to be mentioned: (I) higher scattering efficiency compared to VIS-IR Raman excitation wavelengths, (II) electronic resonance effects which increase the intrinsically weak Raman signal thus improving the S/N ratio of the detected Raman signals and (III) spectral separation of Raman and fluorescence signals. All these advantages are making UV Raman a valuable technique for in situ planetary applications. Mineral as well as biological samples were analyzed using Raman deep UV excitation and the results are presented. For the mineral samples a comparison with excitation in the NIR-VIS spectral regions is made. The impact of fluorescence on Raman data acquisition at different laser excitation wavelengths is assessed. Making use of the resonance effects, spectra of microorganisms were recorded with a high S/N ratio, allowing afterwards a very precise identification and classification (to the strain level) of the measured samples.  相似文献   

18.
《中国化学快报》2020,31(7):1773-1781
Semiconductor-based photoelectrocatalytic processes have attracted considerable research interest for solar energy collection and storage. Photoelectrocatalysis is a heterogeneous photocatalytic process in which a bias potential is applied to a photoelectrode, and thus the photoelectrocatalytic performance is closely related to the photoelectrode prepared by semiconductors. Among various semiconductors, metal-organic frameworks (MOFs) have attracted more and more attention because of their unique properties such as optical properties and adjustable structure. Herein, a comprehensive review on different MOFs (Ti-based, Zn-based, Co-based, Fe-based, Cu-based, and mixed metal-based MOFs) for heterogeneous photoelectrocatalysis is carried out and, in particular, the application of this technique for CO2 conversion and water splitting is discussed. In addition, the challenges and development prospects of MOFs in photoelectrocatalysis are also presented.  相似文献   

19.
UV resonance Raman spectroscopy (UVRR) is a new analytical technique with a unique selectivity which is capable of speciating individual analytes in complex samples. The new instrumentation is discussed as are applications of this technique to studies of polycyclic aromatic hydrocarbons (PAHs) in coal liquids and in tissue. UVRR can also be used to speciate PAHs eluting from high-performance liquid chromatography columns. Other applications to studies of protein structure are also described.  相似文献   

20.
Summary A short review is given on some new instrumental and methodical developments in Raman spectroscopy. In linear Raman spectroscopy a microsampling technique, which is based on the optical levitation by radiation pressure, and the surface enhanced Raman effect (SERS) are discussed. In non-linear Raman spectroscopy new developments in coherent anti-Stokes Raman spectroscopy (CARS) and ionization detected stimulated Raman spectroscopy (IDSRS) as well as their applications in high resolution molecular spectroscopy and in combustion research are described.
Neuere Entwicklungen in der Raman-Spektroskopie
Zusammenfassung Es wird ein kurzer Überblick über einige neuere instrumentelle und methodische Entwicklungen in der Raman-Spektroskopie gegeben. In der linearen Raman-Spektroskopie wird eine Mikroprobentechnik, die auf der optischen Levitation durch Strahlungsdruck beruht, sowie der oberflächenverstärkte Ramaneffekt (SERS) diskutiert. Weiterhin werden neuere Entwicklungen nichtlinearer Ramanmethoden, wie CARS (Coherent anti-Stokes Raman Spectroscopy) and IDSRS (Ionization Detected Stimulated Raman Spectroscopy) sowie deren Anwendungen in der hochauflösenden Molekülspektroskopie und in der Erforschung von Verbrennungsvorgängen besprochen.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号