首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper describes the synthesis of ZrW2O8 by the use of an aqueous citrate-gel method in order to prepare a fine, pure and homogeneous oxide mixture suitable for ceramic processing. The thermal expansion coefficient thus obtained for α-ZrW2O8 is −10.6 × 10−6 °C−1 (50–125 °C) whereas for the β-ZrW2O8 a value of −3.2 × 10−6 °C−1 (200–300 °C) is obtained. The advantages of the use of a sol–gel method is expressed in the very homogeneous end-products. The paper describes crystallographic data, morphological structure and the thermal expansion properties of the ZrW2O8 material. Moreover, photoluminescence and photochromic properties specific to the precursor gel are described and analyzed. These effects support our views that the precursors show homogeneity up to nanometer level.  相似文献   

2.
Olivine-type LiFePO4 is a very promising polyanion-type cathode material for lithium-ion batteries. In this work, LiFePO4 with high specificity capacity is obtained from a novel precursor NH4FePO4·H2O via microwave processing. The grains grow up in the duration of sintering until they reach the decomposition temperature. The apparent conductivity of the samples rises rapidly with the irradiation time and influences the electrochemical performance of the material greatly at high current density. As a result, the LiFePO4 cathode material obtained with a sintering time of 15 min has good electrochemical performance. Between 2.5 and 4.2 V versus Li, a reversible capacity is as high as 156 mAh g−1 at 0.05 C.  相似文献   

3.
The calculations of the electronic structure of layered polyvanadate K2V3O8 were made employing the spin-polarized tight-binding LMTO method. Calculated magnetic moment for K4V6O16 compound phase equals 1.97 μB. V-O interactions were established to be dominating in the chemical bonding generation in this polyvanadate according to the estimated crystal orbital overlap population. The covalent bonds V(2)-V(2) in V(2)2O7 groups and electron density localization on vanadium atoms in isolated pyramids V(1)O5 were found.  相似文献   

4.
Fe3O4 nanorods and Fe2O3 nanowires have been synthesized through a simple thermal oxide reaction of Fe with C2H2O4 solution at 200–600°C for 1 h in the air. The morphology and structure of Fe3O4 nanorods and Fe2O3 nanowires were detected with powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of temperature on the morphology development was experimentally investigated. The results show that the polycrystals Fe3O4 nanorods with cubic structure and the average diameter of 0.5–0.8 μm grow after reaction at 200–500°C for 1 h in the air. When the temperature was 600°C, the samples completely became Fe2O3 nanowires with hexagonal structure. It was found that C2H2O4 molecules had a significant effect on the formation of Fe3O4 nanorods. A possible mechanism was also proposed to account for the growth of these Fe3O4 nanorods. Supported by the Fund of Weinan Teacher’s University (Grant No. 08YKZ008), the National Natural Science Foundation of China (Grant No. 20573072) and the Doctoral Fund of Ministry of Education of China (Grant No. 20060718010)  相似文献   

5.
Lanthanum-modified bismuth titanate (Bi3.25La0.75Ti3O12, BLTO) powders were prepared by the complex polymerization method. The structure and morphology of BLTO powders were investigated by X-ray diffraction and scanning electron microscopy. The complexation of citric acid with the metallic cations was detected by Fourier transformed infrared (FT-IR). The thermal analyses of obtained gels were investigated by differential thermal gravimetric (DTG). The pure and normally stoichiometric phase of BLTO powders could be obtained at relatively low temperature of 550–700 °C even if the bismuth content is not excess in the starting precursors, while the secondary phase could be detected at lower and higher calcination temperatures. The shape of the BLTO grains is similarly to platelet in Bi-layer structure and stoichiometry BLTO was detected by the analysis of energy dispersive spectrometry.  相似文献   

6.
Using Fe3O4 nano-particles as seeds, a new type of Fe3O4/Au composite particles with core/shell structure and diameter of about 170 nm was prepared by reduction of Au3+ with hydroxylamine in an aqueous solution. Particle size analyzer and transmission electron microscope were used to analyze the size distribution and microstructure of the particles in different conditions. The result showed that the magnetically responsive property and suspension stability of Fe3O4 seeds as well as reduction conditions of Au3+to Au0are the main factors which are crucial for obtaining a colloid of the Fe3O4/Au composite particles with uniform particle dispersion, excellent stability, homogeneity in particle sizes, and effective response to an external magnet in aqueous suspension solutions. UV-Vis analysis revealed that there is a characteristic peak of Fe3O4/Au fluid. For particles with d(0.5)=168 nm, the λmax is 625 nm.  相似文献   

7.
Nanocrystalline BiFe0.6Mn0.4O3 powders were synthesized by sol–gel citrate method and studied for gas sensing behavior to reducing gases such as LPG, CO, CH4 and NH3. The composition and the structure of the powders have been investigated by means of XRD and TEM. The result shows that the BiFe0.6Mn0.4O3 powders have a rhombohedral distorted perovskite structure with an average crystallite size of 35–40 nm. The BiFe0.6Mn0.4O3-based LPG sensor shows better sensitivity at an operating temperature of 250 °C. The dispersion of Pd on BiFe0.6Mn0.4O3 in the ratio of 0.8 wt.% improved the sensitivity, selectivity and response time. In addition, it reduced the operating temperature from 250 to 210 °C for LPG sensor. The response time for LPG was less than 1 min.  相似文献   

8.
Solid solution phases of a formula Fe8V10W16–xMoxO85 where 0≤x≤4, have been obtained, possessing a structure of the compound Fe8V10W16O85. It was found on the base of XRD and DTA investigations that these solution phases melted incongruently, with increasing the value of x, in the temperature range from 1108 (x=0) to 1083 K (x=4) depositing Fe2WO6 and WO3. The increase of the Mo6+ ions content in the crystal lattice of Fe8V10W16O85 causes the lattice parameters a=b contraction with cbeing almost constant. IR spectra of the Fe8V10W16–xMoxO85 solid solution phases have been recorded.  相似文献   

9.
With the purpose to obtain a sulfide material for lithium and lithium-ionic thin-film batteries, cobalt sulfide Co9S8 was synthesized on an aluminum foil or stainless steel by electrolysis of aqueous solutions containing cobalt sulfate, sodium thiosulfate and sodium sulfide. The surface morphology of electrolytic Co9S8 is characterized by close packing of ball-like particles 8–12 μm in diameter, consisting of submicrometer structures 300–400 nm in size. It was found that e-Co9S8 electrodes exhibit stable behavior during 100 lithiation-delithiation cycles in a voltage range of 2.8–1.1 V, providing a discharge capacity of ~200 mAh/g. In a lithium cell with ethylene carbonate (EC)-dimethyl carbonate (DMC)-1M LiClO4 electrolyte, a discharge capacity of the e-Co9S8-electrode was 250–450 mAh/g in a voltage range of 2.80–0.2 V. It was found that higher discharge capacities can be achieved for e-Co9S8-electrodes with a smaller active material mass.  相似文献   

10.
Large-scale Li1+x V3O8 nanobelts were successfully fabricated using filter paper as deposition substrate through a simple surface sol–gel method. The nanobelts were as long as tens of micrometers with widths of 0.4–1.0 μm and thickness of 50–100 nm. The nanobelts were characterized by X-ray diffration (XRD), Fourier infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM). The formation mechanism of the nanobelts was investigated, showing that the morphology of the nanobelts is mainly determined by the calcination temperature. Electrochemical properties of the Li1+x V3O8 nanobelts were characterized by charge–discharge experiments, and the results demonstrate that the Li1+x V3O8 nanobelts exhibit a high discharge capacity (278 mAh g−1) and excellent cycling stability.  相似文献   

11.
DFT-PBE/DZ calculations of oligomers of C20H8 polyhedral molecule (derivative of C20 fullerene) were carried out. From the results obtained it follows that quasi-one-dimensional, quasi-two-dimensional, and three-dimensional polymers with compositions [C20H8]n can exist. The geometric parameters of the repeating units of these polymers were estimated.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1813–1817, September, 2004.  相似文献   

12.
Conducting polyaniline/Cobaltosic oxide (PANI/Co3O4) composites were synthesized for the first time, by in situ deposition technique in the presence of hydrochloric acid (HCl) as a dopant by adding the fine grade powder (an average particle size of approximately 80 nm) of Co3O4 into the polymerization reaction mixture of aniline. The composites obtained were characterized by infrared spectra (IR) and X-ray diffraction (XRD). The composition and the thermal stability of the composites were investigated by TG-DTG. The results suggest that the thermal stability of the composites is higher than that of the pure PANI. The improvement in the thermal stability for the composites is attributed to the interaction between PANI and nano-Co3O4.  相似文献   

13.
Pb1–xLaxTiO3 (PLT) nanocrystalline powders were obtained by polymeric precursor method. The samples were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TG) techniques to characterize properly the distinct thermal events occurring during synthesis. The X-ray diffraction patterns show a tetragonal structure for the samples with x=0.10 and 0.15. An increase of the lanthanum concentration to x=0.20 led to a highly symmetric structure, cubic on average. The powders obtained at the end of the synthesis had an average particle size of 30 to 70 nm.  相似文献   

14.
Highly photoactive bi-phase nanocrystalline TiO2 photocatalyst was prepared by a solvent evaporation-induced crystallization (SEIC) method, and calcined at different temperatures. The obtained TiO2 photocatalyst was characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET surface areas. The photocatalytic activity was evaluated by the photocatalytic oxidation of acetone in air. The results show that solvent evaporation can promote the crystallization and phase transformation of TiO2 at 100°C. When calcination temperatures are below 600°C, the prepared TiO2 powders show bimodal pore size distributions in the mesoporous region. At 700°C, the pore size distributions exhibit monomodal distribution of the inter-aggregated pores due to the collapse of the intra-aggregated pores. At 100°C, the obtained TiO2 photocatalyst by this method shows good photocatalytic activity, and at 400°C, its photocatalytic activity exceeds that of Degussa P25. This may be attributed to the fact that the prepared TiO2 photocatalyst has higher specific surface areas, smaller crystallite size and bimodal pore size distribution.  相似文献   

15.
The impedance of a porous gold electrode in contact with solid electrolyte La0.88Sr0.12Ga0.82Mg0.18O2.85 and the effect of the manufacture conditions on its polarization resistance are studied at 600–800°C in air. The overall oxygen reaction rate on a gold electrode is described as the sum of two partial constituents, namely, the oxygen exchange at the gas/electrolyte interface at the gold/gas/electrolyte triple-phased boundary.Translated from Elektrokhimiya, Vol. 41, No. 2, 2005, pp. 190–197.Original Russian Text Copyright © 2005 by Shkerin, Sokolova, Khlupin, Beresnev.This revised version was published online in April 2005 with corrections to the article note and article title and cover date.  相似文献   

16.
Vibrational spectra of finely divided amorphous CsHSO4,Cs5H3(SO4)4 · H2O, and composites based on these are measured and analyzed. An analysis of the spectra indicates the occurrence of substantial changes in the system of hydrogen bonds and in the spectral range of the sulfate group of acid sulfates in the composites. Structural dynamics of the SO4 tetrahedrons is in full conformance with protonic conduction and the data of x-ray diffraction analyses accompanied by differential scanning calorimetry. It is shown that mobility of protons in the composites increases. A mechanism of the formation of the composites and their conduction is proposed.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 640–645.Original Russian Text Copyright © 2005 by Ponomareva, Lavrova, Burgina.  相似文献   

17.
Titania–silica composite have been prepared using polyethylene glycol (PEG) with different molecular weights (M w), PEG20000, PEG10000, and PEG2000, as template in supercritical carbon dioxide (SC CO2). The composite precursors were dissolved in SC CO2 and impregnated into PEG templates using SC CO2 as swelling agent and carrier. After removing the template by calcination at suitable temperature, the titania–silica composite were obtained. The composite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and nitrogen sorption–desorption experiment. Photocatalytic activity of the samples has been investigated by photodegradation of methyl orange. Results indicate that there are many Si–O–Ti linkages in the TiO2/SiO2 composite; the PEG template has a significant influence on the structure of TiO2/SiO2. In addition, the TiO2/SiO2 prepared with PEG10000 exhibited high photocatalytic efficiency. So this work supplies a clue to control and obtain the TiO2/SiO2 composite with different photocatalytic reactivity with the aid of suitable PEG template in supercritical CO2.  相似文献   

18.
This work is focused on determination of the optimum firing temperature which leads to formation of the compounds LnFeO3 with good pigment-application properties (Ln=Gd, La, Yb, Tm, Lu). Based on results of thermal analysis the compounds were prepared by the solid-state reaction at temperature 900 and 1000°C. Colours of pigments vary depending on type of used lanthanoid (from light sienna to dark brown) and also on the type of precursor. Generally, the compounds prepared from iron oxide have more interesting color properties. Colour of these compounds is brighter and deeper. Increasing of the calcination temperature from 900 to 1000°C causes the darkening of colour. The most problably, the darkening is connected with partial reduction of Fe3+ to Fe2+.  相似文献   

19.
Nanocrystalline Fe-doped TiO2 powders were prepared using TiOSO4, urea, and Fe(NO3)3 · 9H2O as precursors through a hydrothermal method. The as-synthesized yellowish-colored powders are composed of anatase TiO2, identified by X-ray diffraction (XRD). The grain size ranged from 9.7 to 12.1 nm, calculated by Scherrer’s method. The specific surface area ranged from 141 to 170 m2/g, obtained by the Brunauer–Emmett–Teller (BET) method. The transmission electron microscopy (TEM) micrograph of the sample shows that the diameter of the grains is uniformly distributed at about 10 nm, which is consistent with that calculated by Scherrer’s method. Fe3+ and Fe2+ have been detected on the surface of TiO2 powders by X-ray photoelectron spectroscopy (XPS). The UV–Vis diffuse reflection spectra indicate that the light absorption thresholds of the Fe-doped TiO2 powders have been red-shifted into the visible light region. The photocatalytic activity of the Fe-doped TiO2 was evaluated through the degradation of methylene blue (MB) under visible light irradiation. The Fe-doped TiO2 powders have shown good visible-light photocatalytic activities and the maximum degradation ratio is achieved within 4.5 h.  相似文献   

20.
Within the framework of the density functional theory (DFT), the electronic structure of monooxodioxovanadium functional groups in tetrahedral coordination, which model the active centers (ACs) of fine supported catalysts V2O5/SiO2 and V2O5/TiO2, has been analyzed. The optimal structures of three ACs as possible models of monomeric and polymeric oxovanadium forms on the carriers with low vanadium content were determined. The modified DFT method involving the time dependence of Kohn-Sham equation (TDDFT) was used for the adopted AC models to calculate the energies of the excited states, and optical spectra of the absorption in 25000–60000 cm?1 region were reconstructed on their base. The spectrum in this region is due to O → V charge transfer. The features of electronic spectra with the charge transfer for V2O5/SiO2 and V2O5/TiO2 catalysts and the vibrational spectra of three AC models corresponding to the monomeric and dimeric oxovanadium forms of the supported catalysts V2O5/SiO2 and V2O5/TiO2 were defined. The detailed interpretation of normal vibration frequencies is given. The frequencies typical of the monomeric and dimeric oxovanadium forms on the carrier surface were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号