首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The rate constants for the reactions C2O + H → products (1) and C2O + H2 → products (2) have been determined at room temperature by means of laser-induced fluorescence detection of C2O radicals, generated either by the KrF excimer laser photolysis Of C3O2, or by the reaction of C3O2 with O atoms. Values of k1 = (3.7 ± 1.0) × 10?11 cm3 s?1 and k2 = (7 ± 3) × 10?13 cm3 s?1 were obtained.  相似文献   

2.
The absolute rate constant of the reaction of NH2 with NO2 has been measured using a flash-photolysis laser resonance-fluorescence technique. The value obtained at room temperature is k1 = 2.3 (± 0.2) × 10?11 cm3 molecule ?1 s?1. A negative temperature coefficient has been found between 298 and 505 K for this reaction, k1 = 3.8 × 10?8 × T?1.30 cm3 molecule?1 s?1. It is thought that this is the major reaction of NH2 in the troposphere.  相似文献   

3.
Flash photolysis of NO coupled with time resolved detection of O via resonance fluorescence has been used to obtain rate constants for the reaction O + NO + N2 → NO2 + N2 at temperatures from 217 to 500 K. The measured rate constants obey the Arrhenius equation k = (15.5 ± 2.0) × 10?33 exp(1160 ± 70)/1.987 T] cm6 molecule?2 s?1. An equally acceptable equation describing the temperature dependence of k is k = 3.80 × 10?27/T1.82 cm6 molecule?2 s?1. These results are discussed and compared with previous work.  相似文献   

4.
The rate constant for the formation of H+5 (D+5) at (86 ± 3) °K by the three-body process has been determined (k3(H) = (2.16 ± 0.10) × 10?28 × 10?28 cm6/molecule2 sec and k3(D) = (1.47 ± 0.20) × 10?28 cm6/molecule2 sec) in a high pressure mass spectrometer. Comparison of this result with published rate data at 300 °K indicates the reaction has an apparent activation energy of ?1.5 kcal/mole.  相似文献   

5.
CS radicals have been produced by photodissociation of CS2 at 193 nm and their disappearance monitored by LIF. The vibrationally excited CS radicals rapidly relax to CS(ν = 0). At 298 K, the rate coefficients for CS(ν = 0) reactions with O2, O3 and NO2 are (2.9 ± 0.4) × 10?19, (3.0 ± 0.4) × 10?16 and (7.6 ± 1.1) × 10?17 cm3 molecule?1 s?1 respectively. The quenching of CS(A 1II)ν=0 by He has a rate coefficient of (1.3 ± 0.2) × 10?12 cm3 molecule?1 s?1.  相似文献   

6.
Upper limits for the rate constant for the reaction Br + H2O2 → HBr + HO2 have been measured over the temperature range 298 to 417 K in a discharge flow, system using a mass spectrometer as a detector. Results are K1< 1.5 × 10?15 cm3 s?1 at 298 K and K1< 3.0 × 10?15 cm3 s?1 at 417 K, respectively. The implication to Stratospheric chemistry is discus  相似文献   

7.
Absolute CD3 concentrations were measured in the flash photolysis of d6-HgMe2. An oscillator strength of (0.99 ± 0.10) × 10?2 was recorded for the 0O band of the B?—X? system, and a recombination rate coefficient of (4.9 ± 0.4) × 10?11 cm3 molecule?1 s?1 was derived. It is suggested that the probability of recombination per collision is virtually the same as for the CH3 radical.Some new bands of the B?—X? system have been discovered and tentatively assigned: from a study of the temperature dependence of the intensity of the 47300 cm?1 transition, Herzberg's scheme ‘b’ has been established for the vibrational assignment.  相似文献   

8.
A combined EPR/LMR spectrometer and fast-flow system has been used to investigate the reactions HO2 + NO(k1), HO2 + OH(k2), HO2 + HO2(k3) at room temperature. The rate constants have been measured: k1 = (7.0 ± 0.6) × 10?12 cm3 s?1 (P = 7–10 Torr);k2 = (5.2 ± 1.2) × 10?11 cm3 s?1 (P = 8–10 Torr);k3 = (1.65 ± 0.3) × 10?12 cm3 s?1 (P = 2.1–24.9 Torr). The conclusion is drawn from analysis of the literature and the present work that k2 and k3 do not depend on pressure up to 1 atm.  相似文献   

9.
The reactions of CH3O2 with SO2 and NO have been studied by steady state photolysis of azomethane in the presence of O2SO2→NO mixtures at 296 K and 1 atm total pressure. The quantum yield of NO oxidation by CH3O2 radicals is increased substantially when SO2 is added to the system indicating an SO2 induced chain oxidation of NO. The rate law gives k1/k2 = (2.5 ± 0.5) × 10?3 for CH3O2 + SO2 → CH3O2SO2 (1), CH3O2 + NO → CH3O + NO2 (2). Combining this ratio with the absolute value of k1 = 8.2 × 10?15 cm3 s?1 gives k2 = 10?11.5 ± 02 cm3 s?1.  相似文献   

10.
The time-resolved laser magnetic resonance (LMR) method has been applied to kinetic measurements for the first time. An intracavity spectrometer based on a CO2 laser with resonant modulation of the magnetic field and with phase-sensitive detection of the signal has been used. Kinetic curves of generation and disappearance of CI atoms and SiH3 radicals were obtained in the pulse photolysis of a mixture of S2Cl2 + SiH4 under the fourth harmonic of a Nd laser (265 nm, 0.5 mJ, 12.5 Hz) at a total pressure of 520–980 Pa (he as diluent) and a temperature of 326 K. The reagent concentrations were: [S2Cl2 = (2.0?10.2)×1014 cm?3, [SiH4 = (2.4?17.4)×1013 cm?3. To remove the transition saturation, 5.3×1015 cm?3 CCl4 was introduced into the reactor. The fraction of dissociated S2Cl2 was 1‰ Rate constants of the reactions (I) Cl+S2Cl2 → products, (II) Cl+SiH4 → HCl+SiH3 and a preliminary rate constant of the reaction (III) SiH3 + S2Cl2 → products were obtained: k1 ≤ (4.3±1.2)×10?12 cm3/s, k2 = (2.3±0.5)×10?10 cm3/s, k3 = (2.4±0.5)×10?11 cm3/s. At a signal-to-noise ratio of 1:1, 1000 pulses and a 12 cm long detection zone the sensitivity to Cl atoms and to SiH3 radicals was 4×1010 cm?3 and = 1011 cm?3, respectively. The time resolution of the method was 4 μs. The method is shown to be promising for kinetic investigations and experiments on fast processes.  相似文献   

11.
Quenching of O(1D2) by COF2 has been investigated by time-resolved resonance fluorescence monitoring of the product O(3PJ) following 248 nm pulsed laser photolysis of O3. The rate constant for total removal of O(1D2) by COF2 is (7.4 ± 1.2) × 10?11 cm3 molecule?1 s?1. 71 ± 7% of the quenching interactions result in formation of O(3PJ).  相似文献   

12.
The rate constants for the reactions OH(X2Π, ν = O) + NH3k1 H2O + NH2 and OH(X2Π, ν = O) + O3k2 → HO2 + O2 were measured at 298°K by the flash photolysis resonance fluorescence technique. The values of the rate constants thus obtained are K1 = (4.1 ± 0.6) × 10?14 and k2 = (6.5 ± 1.0) × 10?14 in units of cm3 molecule ?1 sec1. The results are discussed in terms of understanding the dynamics of the perturbed stratosphere.  相似文献   

13.
The temperature dependence of the rate constant for the reaction HO2 + HO2 → H2O2 + O2 (2k1) has been determined using flash photolysis techniques, over the temperature range 298–510 K, in a nitrogen diluent at a total pressure of 700 Torr. The overall second order state constant is given by k1 = (4.14 ± 1.15) × 10?13 exp[(630 ± 115)/T] cm3 molecule?1 s?1, where the quoted errors refer to one standard deviation. This result is compared with previous findings and the negative activation energy is shown to be consistent with the observation that the rate constant is pressure dependent at 700 Torr.  相似文献   

14.
The rate constant for the reaction or NH3 + OH → NH2 + H2O has been measured in a high temperature fast flow reactor over the range 294–1075 K k = (5.41 ± 0.86) × 10-12 exp[?(2120 ± 143) cal mole?1/RT cm3 molecule?1 s?1. This result is compared with literature values and discussed.  相似文献   

15.
The phosphorescence lifetimes of propynal-h1 and propynal-d1 have been measured at room temperature in the 40 mTorr-1 Torr pressure range The reciprocal of the zero-pressure lifetime (k0) is (3.10 ± 0.05) × 103 and (1.70 ± 0.04) × 103 s?1 for propynal-h1 and propynal-d1 For both compounds the rate constant for self-quenching between triplet and ground-state molecules is kSQ = (1 2±007) × 103 Torr?1 s?1 The deuterium isotope effect is attributed to the T1 → S0 radiationlcss decay, for which kHISC/kDISC = 2 4  相似文献   

16.
Rate coefficients for the collisional quenching of O2*(1Δg) by NO and CO2 at 2–8 torr and 300 K have been determined. kNO = (2.48 ± 0.23) × 10?17 cm3 molecule?1 s?1 and
= (2.56 ± 0.12) × 10?18 cm3 molecule?1 s?1.  相似文献   

17.
The transition linewidth ΔE in crystal C6H6, C6D6 and sym-C6H3D3 has been measured as a function of temperature T from 4.2 to 135°K, and it extrapolates to a common value of ΔEo = 50 cm? at O°K. In C6H6 ΔE = (50 + 7T12) cm?1, indicative of strong exciton—phonon coupling, and there is a line shift of +40 cm?1 per substituent deuteron. Fluorescence excitation spectral data are used to separate the 1B1u(= S2) decay rate kH = 9.4 × 1012 sec?1, derived from ΔE0, into S2S1 internal conversion (rate ≈ 6.6 × 1012 sec?1) and S2Sx (channel 3) internal conversion (rate ≈ 2.8 × 1012 sec?1. A similar value of kH = 9.9 × 1012 sec?1 is obtained from the S2So fluorescence quantum yield of liquid benzene.  相似文献   

18.
The ion-molecule reaction CH3+ + H2O has been studied with a drift tube apparatus. The first step of the reaction was found to have a third-order rate constant with a negative temperature coefficient: kHe(3) = 1.3 × 10?26 (T/300)?3.3 and Kw(3) = 1 × 10?24 (T/300)?0.85. Both water molecules and helium atoms act as stabilizing third bodies.  相似文献   

19.
Rate constants for the reaction of O(3P) atoms with C3H4, C3H6 and NO(M = N2O) have been measured over the temperature range 300–392°K using a modulation-phase shift technique. The Arrhenius expressions obtained are:C2H4, k2 = 3.37 × 109 exp[?(1270 ± 200)/RT]liter mole?1 sec?1,C3H6, k2 = 2.08 × 109 exp[?(0 ± 300)/RT]liter mole?1 sec?1,NO(M = N2O), k1 = 9.6 × 109 exp[(900 ± 200/RT]liter2 mole?2 sec?1.These temperature dependencies of k2 are in good agreement with recent flash photolysis-resonance flourescence measurements, although lower than previous literature values.  相似文献   

20.
The decay of NH2 radicals, from 193 nm photolysis of NH3, was monitored by 597.7 nm laser-induced fluorescence. Room-temperature rate constants of (1.21 ± 0.14) × 10?10, (1.81 ± 0.12) × 10?11, and (2.11 ± 0.18) × 10?11 cm3 molecule?1 s?1 were obtained for the reactions of NH2 with N, NO and NO2, respectively. The production of NH in the reaction of NH2 with N was observed by laser-induced fluorescence at 336.1 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号