首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single crystals of LiCr(MoO4)2, Li3Cr(MoO4)3 and Li1.8Cr1.2(MoO4)3 were grown by a flux method during the phase study of the Li2MoO4-Cr2(MoO4)3 system at 1023 K. LiCr(MoO4)2 and Li3Cr(MoO4)3 single phases were synthesized by solid-state reactions. Li3Cr(MoO4)3 adopts the same structure type as Li3In(MoO4)3 despite the difference in ionic radii of Cr3+ and In3+ for octahedral coordination. Li3Cr(MoO4)3 is paramagnetic down to 7 K and shows a weak ferromagnetic component below this temperature. LiCr(MoO4)2 is isostructural with LiAl(MoO4)2 and orders antiferromagnetically below 20 K. The magnetic structure of LiCr(MoO4)2 was determined from low-temperature neutron diffraction and is based on the propagation vektor . The ordered magnetic moments were refined to 2.3(1) μB per Cr-ion with an easy axis close to the [1 1 1¯] direction. A magnetic moment of 4.37(3) μB per Cr-ion was calculated from the Curie constant for the paramagnetic region.The crystal structures of the hitherto unknown Li1.8Cr1.2(MoO4)3 and LiCr(MoO4)2 are compared and reveal a high degree of similarity: In both structures MoO4-tetrahedra are isolated from each other and connected with CrO6 and LiO5 via corners. In both modifications there are Cr2O10 fragments of edge-sharing CrO6-octahedra.  相似文献   

2.
A detailed experimental study of the 2s- and 2p XPS spectra of TiO2 revealed new (charge-transfer) shake-up satellite structures (at 4.0–5.0 eV from the main peaks) which can be explained using molecular orbital representation. The satellite peaks, situated at about 26 eV from the main peaks, the origin of which was in doubt in the previously reported works are shown conclusively in the present investigation to be energy loss peaks. The relative energies and intensities of the observed satellites are presented and the theoretical implications of the work are discussed.  相似文献   

3.
Li2CaSiO4 and Li2CaGeO4 are isostructural. They have body-centered tetragonal unit cells, with dimensions a = 5.047 ± 0.005, c = 6.486 ± 0.006 Å, and a = 5.141 ± 0.002, c = 6.595 ± 0.002 Å, respectively, and space group I42m. Their crystal structures, refined to R = 0.076 and 0.051, respectively, comprise columns, parallel to [001], of alternating (CaO8) dodecahedra and (SiO4) [or (GeO4)] tetrahedra that are linked by sharing edges. Neighboring columns are joined at their corners to form a three-dimensional network, enclosing channels parallel to [001] that contain lithium. The lithium atoms are in distorted (LiO4) tetrahedra joined at the corners to form sheets perpendicular to [001].  相似文献   

4.
Satellite structure has been observed at about 3.1, 5.4, 6.4 and 14.5 eV below the main peaks in the X-ray photoelectron spectra of the Ti and O levels of TiO2. These satellites arise from transitions, accompanying primary photoemission, between predominantly O2p states of the ligand and various excited states in the conduction band. The energies found fit the transitions calculated by Daude et al. for an electronic band structure calculated by a combined tight-binding and pseudopotential method.  相似文献   

5.
Crystal structures of Pb(MoO2)2(PO4)2 and Ba(MoO2)2(PO4)2 were determined. Both compounds contain the molybdyl group MoO2. The monoclinic unit-cell parameters are a = 6.353(7), b = 12.289(4), c = 11.800 Å, β = 92°56(6), and Z = 4 for the lead salt and a = 6.383(8), b = 7.142(7), c = 9.953(8) Å, β = 95°46(8), and Z = 2 for the barium salt. P21c is the common space group. The R values are respectively R = 0.027 and R = 0.031 for 1964 and 1714 independent reflections. The frameworks built up by a three-dimensional network of monophosphate PO4 and molybdyl MoO2 groups are similar, characterized mainly by corner-sharing PO4 and MoO6 polyhedra. Two oxygen atoms of each MoO6 group are bonded to the molybdenum atom only as in other molybdyl salts.  相似文献   

6.
The electronic spectrum of Li4CoCl6.10H2O was recorded at liquid nitrogen temperature in the 4,000–25,000 cm?1 spectral region. The simi larity of this spectrum to that of CoCl2 permitted us to assume Oh syn metry of the [CoCl6]4? cluster in our sample. The band assignment was performed in the crystal field approximation using Tanabe and Sugano's energy matrices for Dq = 730 cm?1, B = 820 cm?1 and C/B = 4.4.The large number of bands and high intensity of the maxima in the regio 19,000–21,000 cm?1 is discussed.  相似文献   

7.
The crystal structures of three lithium titanates by neutron diffraction powder profile analysis were determined. The tetragonal anatase form of TiO2 becomes orthorhombic on ambient-temperature lithium insertion to Li0.5TiO2 due to the formation of TiTi bonds. The lithium partially occupies the highly distorted octahedral interstices in the anatase framework in fivefold-coordination with oxygen. Cubic LiTi2O4 formed by heating Li0.5TiO2 anatase has a normal spinel structure with Li in the tetrahedral sites. In Li2Ti2O4 formed by reacting LiTi2O4 spinel with n-BuLi at ambient temperature, the titanium remains in the spinel positions but the lithium is displaced, filling all the available octahedral sites.  相似文献   

8.
Interactions in the ternary system K2MoO4-Lu2(MoO4)3-Hf(MoO4)2 have been studied by X-ray powder diffraction and differential thermal analysis. A new triple (potassium lutetium hafnium) molybdate with the 5: 1: 2 stoichiometry has been found. Single crystals of this molybdate have been grown. Its X-ray diffraction structure has been refined (an X8 APEX automated diffractometer, MoK α radiation, 1960 F(hkl), R = 0.0166). The trigonal unit cell has the following parameters: a = 10.6536(1) ?, c = 37.8434(8) ?, V = 3719.75(9) ?, Z = 6, space group R c. The mixed 3D framework of the structure is built of Mo tetrahedra sharing corners with two independent (Lu,Hf)O6 octahedra. Two sorts of potassium atoms occupy large framework voids. Original Russian Text ? E.Yu. Romanova, B.G. Bazarov, R.F. Klevtsova, L.A. Glinskaya, Yu.L. Tushinova, K.N. Fedorov, Zh.G. Bazarova, 2007, published in Zhurnal Neorganicheskoi Khimii, 2007, Vol. 52, No. 5, pp. 815–818.  相似文献   

9.
LLi2Mo4o13 crystallizes in the triclinic system with unit-cell dimensions a = 8.578 Å, b = 11.450 Å, c = 8.225 Å, α = 109.24°, β = 96.04°, γ = 95.95° and space group P1, Z = 3. The calculated and measured densities are 4.02 g/cm3 and 4.1 g/cm3 respectively. The structure was solved using three-dimensional Patterson and Fourier techniques. Of the 2468 unique reflections collected by counter methods, 1813 with I ? 3σ(I) were used in the least-squares refinement of the model to a conventional R of 0.031 (ωR = 0.038). LLi2Mo4O13 is a derivative of the V6O13 structure with oxygen ions arranged in a face-centred cubic type array with octahedrally coordinated molybdenum and lithium ions ordered into layers.  相似文献   

10.
Colorless crystals of CsTh(MoO4)2Cl and Na4Th(WO4)4 have been synthesized at 993 K by the solid-state reactions of ThO2, MoO3, CsCl, and ThCl4 with Na2WO4. Both compounds have been characterized by the single-crystal X-ray diffraction. The structure of CsTh(MoO4)2Cl is orthorhombic, consisting of two adjacent [Th(MoO4)2] layers separated by an ionic CsCl sublattice. It can be considered as an insertion compound of Th(MoO4)2 and reformulated as Th(MoO4)2·CsCl. The Th atom coordinates to seven monodentate MoO4 tetrahedra and one Cl atom in a highly distorted square antiprism. Na4Th(WO4)4 adopts a scheelite superlattice structure. The three-dimensional framework of Na4Th(WO4)4 is constructed from corner-sharing ThO8 square antiprisms and WO4 tetrahedra. The space within the channels is filled by six-coordinate Na ions. Crystal data: CsTh(MoO4)2Cl, monoclinic, P21/c, Z=4, a=10.170(1) Å, b=10.030(1) Å, c=9.649(1) Å, β=95.671(2)°, V=979.5(2) Å3, R(F)=2.65% for I>2σ(I); Na4Th(WO4)4, tetragonal, I41/a, Z=4, a=11.437(1) Å, c=11.833(2) Å, V=1547.7(4) Å3, R(F)=3.02% for I>2σ(I).  相似文献   

11.
6Li and 7Li MAS NMR spectra including 1D-EXSY (exchange spectroscopy) and inversion recovery experiments of fast ionic conducting Li2MgCl4, Li2-xCuxMgCl4, Li2-xNaxMgCl4, and Li2ZnCl4 have been recorded and discussed with respect to the dynamics and local structure of the lithium ions. The chemical shifts, intensities, and half-widths of the Li MAS NMR signals of the inverse spinel-type solid solutions Li2-xMIxMgCl4 (MI=Cu, Na) with the copper ions solely at tetrahedral sites and sodium ions at octahedral sites and the normal spinel-type zinc compound, respectively, confirm the assignment of the low-field signal to Litet of inverse spinel-type Li2MgCl4 and the high-field signal to Lioct as proposed by Nagel et al. (2000). In contrast to spinel-type Li2-2xMg1+xCl4 solid solutions with clustering of the vacancies and Mg2+ ions, the Cu+ and Na+ ions are randomly distributed on the tetrahedral and octahedral sites, respectively. The activation energies due to the various dynamic processes of the lithium ions in inverse spinel-type chlorides obtained by the NMR experiments are Ea=6.6-6.9 and ΔG*>79 KJ mol−1 (in addition to 23, 29, and 75 kJmol-1 obtained by other techniques), respectively. The largest activation energy of >79 KJ mol−1 corresponds to hopping exchange processes of Li ions between the tetrahedral 8a sites and the octahedral 16d sites. The smallest value of 6.6-6.9 KJ mol−1, which was derived from the temperature dependence of both the spin-lattice relaxation times T1 and the correlation times τC of Litet, reveals a dynamic process for the Litet ions inside the tetrahedral voids of the structure, probably between fourfold 32e split sites around the tetrahedral 8a site.  相似文献   

12.
Phase equilibria in the Ba3(VO4)2-K2Ba(MoO4)2 and Pb3(VO4)2-K2Pb(MoO4)2 systems have been investigated. In the first system, a continuous series of substitutional solid solutions with the palmierite structure is formed, and in the second one, the polymorphic transition in lead orthovanadate at 100°C restricts the extent of the palmierite-type solid solution to 10–100 mol % K2Pb(MoO4)2. Original Russian Text ? V.D. Zhuravlev, Yu.A. Velikodnyi, A.S. Vinogradova-Zhabrova, A.P. Tyutyunnik, V.G. Zubkov, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 10, pp. 1746–1748.  相似文献   

13.
以MoO_4~(2-)部分取代Li3Fe2(PO4)3中的PO_4~(3-),研究表明:加入的MoO_4~(2-)离子主要以固溶形式存在于Li3Fe2(PO4)3中,起到了显著改善其电化学性能的作用。其中,MoO_4~(2-)掺杂浓度为0.3的样品表现出最佳的电化学性能,其在0.5C倍率下的首次放电容量为113.7 m Ah·g~(-1),这一数值比未掺杂的提高了20.7%;经过60次循环充放电,容量保持率为94%。将放电倍率从0.5C逐步增大至5C,再降至初始的0.5C,并在每个倍率循环10次,这一材料的最终放电容量可达首次0.5C的95%。这些优异的性能应归因于MoO_4~(2-)掺杂使材料的氧化还原能力增强,氧化还原电对的电势差减小,电池内部的电荷转移电阻减小,以及Li+扩散系数增加。  相似文献   

14.
以MoO42-部分取代Li3Fe2(PO43中的PO43-,研究表明:加入的MoO42-离子主要以固溶形式存在于Li3Fe2(PO43中,起到了显著改善其电化学性能的作用。其中,MoO42-掺杂浓度为0.3的样品表现出最佳的电化学性能,其在0.5C倍率下的首次放电容量为113.7 mAh·g-1,这一数值比未掺杂的提高了20.7%;经过60次循环充放电,容量保持率为94%。将放电倍率从0.5C逐步增大至5C,再降至初始的0.5C,并在每个倍率循环10次,这一材料的最终放电容量可达首次0.5C的95%。这些优异的性能应归因于MoO42-掺杂使材料的氧化还原能力增强,氧化还原电对的电势差减小,电池内部的电荷转移电阻减小,以及Li+扩散系数增加。  相似文献   

15.
Subsolidus phase relations in the systems Li2MoO4-K2MoO4-Ln2(MoO4)3 (Ln=La, Nd, Dy, Er) were determined. Formation of LiKLn2(MoO4)4 was confirmed in the systems with Ln=Nd, Dy, Er at the LiLn(MoO4)2-KLn(MoO4)2 joins. No intermediate phases of other compositions were found. No triple molybdates exist in the system Li2MoO4-K2MoO4-La2(MoO4)3. The join LiLa(MoO4)2-KLa(MoO4)2 is characterized by formation of solid solutions.Triple molybdates LiKLn2(MoO4)4 for Ln=Nd-Lu, Y were synthesized by solid state reactions (single phases with ytterbium and lutetium were not prepared). Crystal and thermal data for these molybdates were determined. Compounds LiKLn2(MoO4)4 form isostructural series and crystallized in the monoclinic system with the unit cell parameters a=5.315-5.145 Å, b=12.857-12.437 Å, c=19.470-19.349 Å, β=92.26-92.98°. When heated, the compounds decompose in solid state to give corresponding double molybdates. The dome-shaped curve of the decomposition temperatures of LiMLn2(MoO4)4 has the maximum in the Gd-Tb-Dy region.While studying the system Li2MoO4-K2MoO4-Dy2(MoO4)3 we revealed a new low-temperature modification of KDy(MoO4)2 with the triclinic structure of α-KEu(MoO4)21 (a=11.177(2) Å, b=5.249(1) Å, c=6.859(1) Å, α=112.33(2)°, β=111.48(1)°, γ=91.30(2)°, space group , Z=2).  相似文献   

16.
The diatomics-in-molecules method, with an improved triplet diatomic curve for Li2, is employed in a reexamination of the stability of Li3 and Li4 species. Results are compared to other theoretical and experimental values.  相似文献   

17.
The photoelectron spectra of ruthenium tetroxide and osmium tetroxide excited by He(I) radiation are reported. From their interpretation it follows that the first two strong low energy transitions in the electronic absorption spectra of OsO4, RuO4, TcO?4, ReO?4, MoO2?4 and WO2?4 can be assigned to t1 → 2e and 3t2 → 2e respectively.  相似文献   

18.
Studies on the kinetics and mechanism of the reaction leading to Cr2(MoO4)3 have been made using X-ray diffraction and infrared spectroscopy. The apparent activation energy, E=285±22 kJ/mol has been calculated, based on the Ginstling-Brounstein diffusion controlled model.  相似文献   

19.
Physicochemical analysis (XRPA, DTA) was used to study phase equilibria in a ternary salt system Rb2MoO4-Fe2(MoO4)3-Hf(MoO4)2 in the subsolidus region. Ternary molybdates with compositions 5:1:3, 5:1:2, and 1:1:1 have been found and synthesized. Crystal and thermal characteristics have been determined. Single crystals of the ternary molybdate Rb5FeHf(MoO4)6 with a composition of 5:1:2 were grown. The crystal structure of the compound was solved using X-ray diffractometry (CAD-4 automatic diffractometer, MoK α radiation, 1766 F(hkl), R = 0.0298). Hexagonal crystals with unit cell dimensions: a = b = 10.124(1) Å, c =15.135(3) Å, V = 1343.4(4) Å3, Z = 2, ρcalc = 4.008 g/cm3, space group P63. The mixed three-dimensional framework of the structure is formed from two sorts of MoO4 tetrahedra and Fe and Hf octahedra linked through their common O-vertices. Rubidium atoms of three varieties occupy the large voids of the framework.Original Russian Text Copyright © 2004 by B. G. Bazarov, R. F. Klevtsova, A. D. Tsyrendorzhieva, L. A. Glinaskaya, and Zh. G. Bazarova__________Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 6, pp. 1038–1043, November–December, 2004.  相似文献   

20.
The subsolidus area of Cs2MoO4-Al2(MoO4)3-Zr(MoO4)2 system was studied by X-ray powder diffraction. Two new molybdates with component molar ratios of 1: 1: 1 (S1) and 5:1:2 (S2) were synthesized for the first time. The crystallographic parameters of the 5:1:2 compound were determined. Solution- melt crystallization and spontaneous nucleation yielded crystals of new 1:1:1 cesium aluminum zirconium molybdate Cs(AlZr0.5)(MoO4)3. Its formula unit and crystal structure were refined by X-ray diffraction (1592 reflections, R=0.0249). Trigonal crystals: a=12.9441(2) ?, c=12.0457(4) ?, V=1747.86(7) ?3, Z = 6, space group R $ \bar 3 $ \bar 3 . The three-dimensional combined framework of this structure is formed by MoO4 tetrahedrons linked through common vertices to (Al,Zr)O6 octahedrons. Cesium atoms occupy large cavities of the framework. Crystallographic position M(1) is occupied by randomly distributed Al3+ and Zr4+ cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号