首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Details of rotational energy transfer from a few selected KJ′ levels in the zero point vibrational level of 1Au(S1) glyoxal vapor have been studied. The cross section for destruction of an initial KJ′ level by rotational relaxation in collision with ground electronic state glyoxal is about 240 A2 or 4.5 times gas kinetic. Much of the rotational transfer within the S1 state occurs with large ΔK′ and ΔJ′. No strong propensities for △K′ = 0, ± 1, ± 2, or ± 3 with small ΔJ′ changes occur in collisions with ground electronic state glyoxal. The study was made by examination of the rotational structure in the 510 emission band at various pressures after excitation in the 0,0 band of the S1—S0 system with the 454.5 nm argon ion line.  相似文献   

2.
The systems of torsional vibration levels of the trans and cis methacryloyl chloride isomers in the ground (S 0) and excited (S 1) electronic states obtained by analyzing the vibrational structure of the gas-phase UV spectrum were used to reproduce the internal rotation potential functions of the molecule in both electronic states. The kinematic F factor in the S 0 and S 1 electronic states was calculated taking into account the relaxation of geometric parameters depending on the internal rotation angle. The internal rotation potential function parameters in the S 0 state are substantially different from the parameters obtained using the torsional levels of the IR Fourier transform spectrum; at the same time, they are substantiated by quantum-mechanical calculations.  相似文献   

3.
The S1S0 fluorescence excitation spectra and the S1S0 dispersed fluorescence spectra of o-, m-and p-tolunitrile were measured in supersonic jets. Low-frequency bands due to internal rotation of the methyl group were observed in m- and p-tolunitrile. Observed band positions and relative intensities of the internal rotational bands were reproduced by a calculation using a free rotor basis set. From the analysis, the potential curve of the internal rotation was determined in both S1 and S0. It was found that the barrier height increases in going from S0 to S1 in m-tolunitrile, while it decreases in p-tolunitrile. In contrast, no low-frequency band was found in o-tolunitrile. It is concluded that the potential curve in o-tolunitrile does not change in going from S0 to S1. The change of the barrier height by electronic excitation in tolunitriles differs greatly from that observed in other toluene derivatives. It is suggested that the electronic properties of a substituent are important for the methyl rotation in the excited state.  相似文献   

4.
The effect of rotational excitation on the electronic relaxation of the S1 state of “isolated” benzene has been studied by examination of resonance fluorescence generated when narrow-band exciting light is swept through the rotational envelopes of four S1 ← S0 absorption bands. To within the ten percent uncertainty in measurement, the fluorescence yields are independent of the position of the exciting light within an absorption band. Thus neither radiative decay nor intersystem crossing to the triplet state displays large sensitivity to molecular rotation, at least when excited state relaxation proceeds from rotational distributions of moderate diversity.  相似文献   

5.
The internal conversion process from single vibronic levels in the first excited electronic state S1 of chromyl chloride was theoretically investigated. On the basis of this analysis certain important features of the experimentally observed fluorescence decay from S1 have been understood. Implications of the obtained results to multiphoton chemistry are discussed.  相似文献   

6.
The potential energy surfaces of the nitroso compounds CClF2NO and CCl2FNO in the ground and lowest excited singlet and triplet electronic states were studied by various ab initio methods (including multiconfigurational methods). The equilibrium geometric parameters, vibrational frequencies, internal rotation potential functions, and rotational contours of bands in the S1 S0 vibronic spectrum of the CClF2NO molecule were calculated. For the molecules under consideration, the quantum-mechanical problem on torsional motion was solved. The results of calculations are, on the whole, in good agreement with experiment.  相似文献   

7.
The electronic spectra of m—substituted phenols and β-naphthol in supersonic free jets have been investigated. All the molecules studies exhibit two strong features in the fluorescence excitation spectra, which are due to two rotational isomers in which the hydrogen atom of the OH group is in cis and trans configurations with respect to the m—substituent. The difference between the S1 — S0 excitation energies of the two isomers is in the range from 100 to 300 cm?1. This large difference indicates the potentiality of electronic spectroscopy in the discrimination of the rotational isomers. The dispersed fluorescence spectra of the molecules as well as the electronic spectra of the hydrogen—bonded complexes provide definite evidences for the existence of the two isomers  相似文献   

8.
The fluorescence excitation, dispersed fluorescence and hole burning spectra, and fluorescence lifetimes of jet-cooled o-, m-, and p-methylanisoles (MA) were measured. The low-frequency ring methyl internal rotational bands observed for their S0 and S1 states were assigned. In the case of m-MA, the rotational isomers of cis and trans conformers, which arise from the orientation of the OCH3 group with respect to the CH3 group, were assigned by hole-burning spectroscopy. The observed level energies and relative intensities of the methyl internal rotation were reproduced by a calculation using a free rotor basis set. Furthermore, their potentials in the S0 and the S1 states were determined. The potential barrier heights for the S0 states of m- and p-MA were quite low, suggesting that the methyl groups are freely rotating, while changing from S0 to S1 states, the potential barrier height increases. The potential barrier heights of o-MA drastically decreased in going from S0 to S1 states. The decrease would be due to the hydrogen bonding between O atom and one H atom of the methyl group. The torsional bands of the methoxy group (–OCH3) were also observed for p- and o-MA. The –OCH3 modes are found to couple with the level of the e species for the methyl internal rotation.Fluorescence lifetimes (τf) of the methyl internal rotational bands in the S1 states of o-, m-, and p-MA were measured in order to investigate the photochemical dynamics. The values of the nonradiative rate constant (knr) were estimated from the τf values and Franck–Condon factors. The knr values drastically increased with the excitation of methyl internal rotation. Accordingly, the methyl internal rotation should enhance the nonradiative process, presumably intersystem crossing (ISC). The enhancement should be caused by the increase of the state density (ρ) effectively coupled with triplet manifolds. The drastic increase in the ρ value should be caused by level mixing. In addition, the methyl internal rotational motion may enhance the increase of the coupling matrix elements through the vibronic coupling between the excited singlet states. The remarkable rotational quantum species dependence on the ISC rate constant (kISC) value clearly appeared in m-MA. The dependence should result from the difference of the ρ value between a1 and e species, since the e species are doubly degenerate. The species dependence was apparently related to the potential barrier height, suggesting that the large barrier height should have an influence on the ρ value of the triplet states.  相似文献   

9.
The vibronic absorption spectrum of fluoral vapor was studied in the region of the S1←S0 electronic transition (313–360 nm). The origin O0 0+) of the transition (29419 cm−1) and a number of fundamental frequencies in the S0 and S1 states were determined. The character of intensity distribution in the spectral bands indicates that the electronic excitation leads to significant change of the CF3 group orientation relative to the molecular frame. Moreover, it was found that the carbonyl fragment of the molecule in the S1 state has pyramidal structure (in contrast, the carbonyl fragment of the fluoral molecule in the S0 state is planar). The experimental torsion and inversion energy levels were used for the calculation of internal rotation and inversion potential functions of fluoral molecule in the S1 state. The potential barriers to internal rotation and inversion were found to be 1270 cm−1 (15.2 kJ mol−1) and 550 cm−1 (6.6 kJ mol−1), respectively. The conformational changes caused by S1←S0 electronic excitation in the fluoral molecule are similar to those observed in acetaldehyde and biacetyl molecules and differ from the conformational behavior of hexafluorobiacetyl molecule. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 294–299, February, 1998.  相似文献   

10.
A systematic quantum mechanical study of the possible conformations, their relative stabilities, vibrational and electronic spectra and thermodynamic parameters of methyl-3-methoxy-2-propenoate has been reported for the electronic ground (S0) and first excited (S1) states using time-dependent and time-independent Density Functional Theory (DFT) and RHF methods in extended basis sets. Detailed studies have been restricted to the E-isomer, which is found to be substantially more stable than the Z-isomer. Four possible conformers c′Cc, c′Tc, t′Cc, t′Tc, of which the first two are most stable, have been identified in the S0 and S1 states. Electronic excitation to S1 state is accompanied with a reversal in the relative stability of the c′Cc and c′Tc conformers and a substantial reduction in the rotational barrier between them, as compared with the S0 state. Optimized geometries of these conformers in the S0 and S1 states are being reported. Based on suitably scaled RHF/6-31G** and DFT/6-311G** calculations, assignments have been provided to the fundamental vibrational bands of both these conformers in terms of frequency, form and intensity of vibrations and potential energy distribution across the symmetry coordinates in the S0 state. A complete interpretation of the electronic spectra of the conformers has been provided.  相似文献   

11.
《Chemical physics letters》1987,134(3):255-258
The electronic spectrum of 2-acetylanthracene in a supersonic free jet reveals the existence of two rotational isomers with ≈ 196 cm−1difference between their S1 origins. In low-temperature rigid glasses, 2-acetylanthracene forms stable dimers. The probable structure of this dimer is also briefly discussed.  相似文献   

12.
《Chemical physics letters》1985,113(3):307-310
Fast radiationless deactivation Se ∼→ S0 of a photoexcited state through a “funnel” is discussed. The experimental rates of such transitions cannot be explained in general by a one-dimensional model considering only the angle of isomerization. Inclusion of the full number of degrees of freedom leads to a multi-dimensional intersection of the adiabatic potential energy surfaces Ue and U0 in the region of the “funnel” where non-adiabatic interactions are strong and cause a fast electronic transition Se ∼→ S0. The rate constant of the isomerization reaction is found to be strongly related to the rate of rotational relaxation in the solvent and relaxation of the solvent orientational polarization.  相似文献   

13.
S2 → S0 fluorescence quantum yields and S2 lifetimes of eight aromatic thiones in inert perfluoroalkane solutions at room temperature have been measured using picosecond laser techniques. Photostable, structurally rigid thiones undergo S2 → S1 internal conversion at rates consistent with the energy gap law of radiationless transitions. An average electronic coupling matrix element of 1.9 × 102 cm?1 is found.  相似文献   

14.
Theoretical investigation of the 18 lowest electronic states of the molecule ScI in the representation 2S+1Λ(±) has been performed via CASSCF and MRCI (single and double excitation with Davidson correction) calculations. To the best of our knowledge these calculated electronic states are the first ones from ab initio methods. Thirteen electronic states between 4,500 cm?1 and 21,000 cm?1 have been studied for the first time and have not yet been observed experimentally. The harmonic frequency ωe, the internuclear distance Re, the electronic transition energy with respect to the ground state Te, and the rotational constant Be have been calculated for the considered electronic states. By using the canonical functions approach the eigenvalues Eυ and the rotational constants Bυ have also been calculated for the six lowest‐lying electronic states. The comparison of these results with the theoretical and the experimental data available in the literature shows a good agreement. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

15.
The internal rotation potential function of the acryloyl chloride molecule in the S 0 and S 1 electronic states was reproduced using systems of torsional vibration levels obtained for its trans and cis isomers by analyzing the vibrational structure of the UV spectrum of the molecule. The kinematic factor F in the S 0 ground state was calculated including geometric parameter relaxation as a function of internal rotation angle. The torsional potential parameters in the S 0 state obtained in this work were substantially different from those determined from the infrared Fourier-transform spectrum ignoring the resonance perturbation of the level with v = 3. The form of the internal rotation potential function and the higher stability of the trans isomer (the main isomer) were substantiated by high-level quantum-mechanical calculations.  相似文献   

16.
The absorption of light by molecules can induce ultrafast dynamics and coupling of electronic and nuclear vibrational motion. The ultrafast nature in many cases rests on the importance of several potential energy surfaces in guiding the nuclear motion—a concept of central importance in many aspects of chemical reaction dynamics. This Minireview focuses on the non‐ergodic nature of internal conversion, that is, on the concept that the nuclear dynamics only sample a reduced phase space, potentially resulting in localization of the dynamics in real space. A series of results that highlight the nonstatistical nature of the excited‐state deactivation process is presented. The examples are categorized into four groups. 1) Localization of the energy in one degree of freedom in S2→S1 transitions, in which the transition is either determined by the time spent in the S2→S1 coupling region or by the time it takes to reach it. 2) Localization of energy into a single reactive mode, which is dictated by the internal conversion process. 3) Initiation of the internal conversion by activation of a single complex motion, which then specifically couples to a reactive mode. 4) Nonstatistical internal conversion as a tool to accomplish biomolecular stability. Herein, the discussion on nonstatistical internal conversion in DNA as a mechanism to eliminate electronic excitation energy is extended to include molecules with an S?S bond as a model of the disulfide bridge in peptides. All of these examples are summed up in Kasha’s rule. For systems with multiple degrees of freedom it will be possible to locate an appropriate motion somewhere in phase space that will take the wavepacket to the coupling region and facilitate an ultrafast transition to S1. Once at S1, the momentum of the wavepacket is lost and the only options left are the statistical processes of reaction or light emission.  相似文献   

17.
《Chemical physics letters》1985,116(6):538-542
Photoisomerisation of t-stilbene in n-alcohols is discussed on the basis of recent experiments by Sundstro¨m and Gillbro. The reaction is proposed to consist of three steps: rotational relaxation on S11ransk1S1p (p = perpendicular configuration) in a barrierless potential U1(θ); a fast electronic transition S1p → S0p due to strong non-adiabatic interactions, and a rotational relaxation S0pk2S0cis(trans) in a barrierless potential U0(θ); k1k2. In the diffusion limit the photoexcited state lifetime, τ = [(k1 + k2)/2]−1, is a linear function of the solvent viscosity in qualitative agreement with experiment.  相似文献   

18.
The discrete variable representation method is applied to the determination of the rotation-vibration energy levels of the fundamental electronic state of NO2. The Hamiltonian is expressed in Johnson hyperspherical coordinates and developed on a DVR basis for each internal coordinate, while parity-adapted linear combinations of Wigner functions are used to describe the rotational motion. The diagonalization of the Hamiltonian matrix is performed using the Lanczos algorithm for large symmetric and Hermitian matrices. Results for rovibrational states up to J = 11 for the first five vibrational energy levels are presented. © 1997 John Wiley & Sons, Inc.  相似文献   

19.
The vibronic spectrum of the 2,2-difluoroethanal vapor was recorded using a multipass optical cell with an optical length of at least 140 m. The spectrum in the region of 300—364 nm was assigned to the S1S0 electronic transition (from the ground S0 to the first excited singlet S1 electronic state); the vibrational structure of the spectrum was analyzed. The spectrum bands were assigned to two systems of vibronic transitions, namely, transitions between the levels of the cis-conformer (S0) and of the S1 conformers, with the origins (00 0 transitions between the zero vibrational levels of conformers) at 29192 and 29087 cm–1, respectively. Analysis of the spectrum showed that the S1S0 electronic excitation of the cis-conformer was followed by rotation of the CHF2 top and pyramidal distortion of the carbonyl fragment. A number of fundamental frequencies were found for S1 conformers, in particular, torsion and inversion energy levels. The experimental data are in satisfactory agreement with the results of quantum-chemical calculations for the 2,2-difluoroethanal molecule in the S0 and S1 states.  相似文献   

20.
Ab initio quantum-chemical calculations of equilibrium geometric parameters, vibrational frequencies, and potentials of internal rotation for CCIF2NO and CCl2FNO molecules in the ground (S0) and lowest excited singlet (S1) electronic states were performed. The results of calculations were compared with experimental data. A new interpretation of experimental spectra of the CCIF2NO molecule was suggested. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1453–1458, August, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号