首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
C2(a 3πu) disappearance rate constants of 1.44, 0.96, 0.0296, 0.0130 and < 10?6(x10?10cm3s?1) are reported for reactions with C2H4, C2H2, O2, C2H6, and CH4, respectively at 298 K. C2(a 3πu) fragments are generated by multiphoton ArF excimer laser photodissociation at C2H2, and monitored by dye laser induced fluorescence. Arguments are presented which favor chemical reactions over the C2(a 3πu) → (X 1σ+g) quenching channel. C2 + C2H2 represents the one possible exception to the reactive channel.  相似文献   

2.
The rate constants for the reactions C2O + H → products (1) and C2O + H2 → products (2) have been determined at room temperature by means of laser-induced fluorescence detection of C2O radicals, generated either by the KrF excimer laser photolysis Of C3O2, or by the reaction of C3O2 with O atoms. Values of k1 = (3.7 ± 1.0) × 10?11 cm3 s?1 and k2 = (7 ± 3) × 10?13 cm3 s?1 were obtained.  相似文献   

3.
Experimental differential cross sections for 40 keV electrons scattered by C2H2, C2H4 and C2H6 molecules were measured using the gas electron diffraction method in the range of the scattering variable s from s = 1 A?1 to s = 30 A?1. The differential cross sections for neon were also measured and compared with calculated differential cross sections to calibrate the diffractograph. Experimental differential cross sections show significant deviations with respect to theoretical differential cross sections calculated from the Debye-Ehrenfest model, mainly in the range of small scattering angles. The observed differences are connected to chemical binding effects. From the experimental data, an estimation of the binding energy was carried out. The deduced values: ?0.58 ± 0.20 au for C2H2, ?0.94 ± 0.30 au for C2H4 and ?1.23 ± 0.40 au for C2H6 are in agreement with those obtained by thermochemical methods.  相似文献   

4.
Rate constants for the reaction of O(3P) atoms with C3H4, C3H6 and NO(M = N2O) have been measured over the temperature range 300–392°K using a modulation-phase shift technique. The Arrhenius expressions obtained are:C2H4, k2 = 3.37 × 109 exp[?(1270 ± 200)/RT]liter mole?1 sec?1,C3H6, k2 = 2.08 × 109 exp[?(0 ± 300)/RT]liter mole?1 sec?1,NO(M = N2O), k1 = 9.6 × 109 exp[(900 ± 200/RT]liter2 mole?2 sec?1.These temperature dependencies of k2 are in good agreement with recent flash photolysis-resonance flourescence measurements, although lower than previous literature values.  相似文献   

5.
Hydrocarbon solutions of PtPCy3(C2H4)2 (Cy = cyclohexyl) react rapidly with 8-quinolinecarboxaldehyde (1 equiv.) to yield tricyclohexylphosphine quinolinecarboxyl platinum hydride (1) and CH2CH2 (2 equiv.). Compound 1 reacts with CCl4 in hydrocarbons to give PtPCy3(NC9H6CO)Cl (2) and CHCl3. The compound PtPCy3(C2H4)2 also reacts with Ph2P(C6H4-o-CHO) and Ph2As(C6H4-o-CHO) to give PCy3PtPh2P(C6H4-o-CO)(H) (3) and PCy3PtPh2As(C6H4-o-CO)(H) (4), respectively. Compounds 1, 2, 3, and 4 were characterized by infrared and 1H NMR spectra, and the crystal structure of 3 was determined by X-ray diffraction. Crystals of 3 are monoclinic, with space group P21/n and Z = 4 with the unit cell dimensions a 9.7936(17), b 14.844(35), c 23.530(64) Å, β 91.817 (18)°, and V 3419.09(1.36) Å3. The structure is refined to final discrepancy factors of R = 0.055, and Rw = 0.064. The molecular structure of 3 is that ligating atoms are in a plane containing Pt. The position of the hydride was not located crystallographically, but the 1H NMR spectrum of 3, supports the presence of a terminal hydride that is cis to the carbonyl. The IR band of 3 at 2023 cm?1 which is assigned to ν(PtH), and the hydride cleavage reaction of 1 with CCl4, provide evidence for the PtH bond.  相似文献   

6.
The incoherent inelastic neutron scattering (INS) spectra of Mn0.84PS3[Co(C5H5)2] 0.32 and Mn0.86 PS3[Cr(C6H6)2]0.28 compounds at 10 K have been investigated within the frequency ranges 0–80 cm?1 (E0 = 12.5 meV) and 0–360 cm?1 (E0 = 50 meV). Also, infrared and Raman spectra (0–400 cm?1 of Cr(C6H6)2I at various temperatures have been obtained for the first time. From a comparison of far infrared, low frequency Raman and INS results, we propose an assignment for the internal torsion and for the librational motions in the intercalated organometallic cations. An estimate of the potential barrier height against the torsion and the Rz whole-body rotation is derived; these values are compared with those calculated for the corresponding iodide salts. We conclude that a significant decrease of the intermolecular forces acting on the rings is taking place within the interlamellar space.  相似文献   

7.
The Raman and infrared spectra (4000200 cm?1) of (C4H4P)Mn(CO)3 and (C4D4P)Mn(CO)3, and of [C4H2(CH3)2P]Mn(CO)3 and [C4D2(CH3)2P]Mn(CO)3 in the liquid and solid states (10–400 K) have been investigated. A complete vibrational assignment is proposed and valence force fields of the (C5H5) and (C4H4P) cycles are compared. From these results, it is clearly shown that the (C4H4P) rings are more electrophilic and weaker π-electron donors than (C5H5) rings, this is in agreement with their chemical behavior.  相似文献   

8.
Single crystal susceptibilities of Er(C2O4) (C2O4H)·3H2O are reported over the 1.5–20 K interval, and EPR spectra at 4.2 K of Y (C2O4) (C2O4H·3H2O doped with Er3+ are also reported. The susceptibilities follow the CurieWeiss law, with g| = 12.97 ± 0.05, g = 2.98 ± 0.05, θ| = ?0.25 ± 0.05 K, and θ = ?0.12 ± 0.05 K.  相似文献   

9.
The electronic spectrum of Li4CoCl6.10H2O was recorded at liquid nitrogen temperature in the 4,000–25,000 cm?1 spectral region. The simi larity of this spectrum to that of CoCl2 permitted us to assume Oh syn metry of the [CoCl6]4? cluster in our sample. The band assignment was performed in the crystal field approximation using Tanabe and Sugano's energy matrices for Dq = 730 cm?1, B = 820 cm?1 and C/B = 4.4.The large number of bands and high intensity of the maxima in the regio 19,000–21,000 cm?1 is discussed.  相似文献   

10.
The 193 nm laser photodissociation of CH2H2 and CF3C2H has been studied. With the laser beam focused, C2(d3Πg) and CH(A2Δ) radicals were formed by multiphoton processes in both C2H2 and CF3C2H; however, the one-photon process forming C2H is still predominant in CF3C2H photolysis. The production of C2(d3Πg) and CH(A2Δ) emissions is prompt,and the emission intensities show similar (less than quadratic) dependence on laser power whether the radicals are produced from C2H2 or CF3C2H. In addition, the vibrational distribution of the Swan system is nearly the same in CF3C2H as in C2H2. The results indicate that the overall photolytic processes are similar in two molecules. Both the C2(d3Πg) and CH(A2Δ) emissions are quenched by Xe with rate constants of 4.8×10?11 and 1.8×10?11 cm3 molecule?1 s?1, respectively.  相似文献   

11.
Two bands appear for each CN stretching and nitro deformation vibration in the infrared and Raman spectra of m-dinitrobenzene and m-dinitrobenzene-d4. The 907 cm?1 bending mode in the vibrational spectra of m-dinitrobenzene undergo 30 cm?1 upward shift upon d4 substitution. A normal coordinate analysis pointed out that the 937 cm?1 bending and 727 cm?1 CN stretching vibrations as well as 18b CD in-plane deformation are mixed to a great extent. The other nitro bending mode undergo also an inverse isotopic effect (2 cm?1 upward shift) due to coupling with the 18a CD in-plane deformation vibration.  相似文献   

12.
Absorption spectra of single crystals of Cs2SO4 doped with MoO2?4 and of RbClO4 and (C2H5)4HClO4 doped with ReO?4 have been measured at the liquid-helium temperature. All spectra show two band systems with pronounced vibrational structures. In Td symmetry they must correspond to 1T2 - 1A1 charge-transfer electornic transitions. It is likely that in the two band systems there are more than two electronic transitions.  相似文献   

13.
Ab initio calculations at the STO—3G and 4—31G levels have been carried out for the H2SO4 molecule as a function of the pair of twist angles of the HO bonds about the respective OS bonds. Values for the remaining bond angles and lengths were taken from the recent microwave structural determination by Kuczkowski et al. The results indicate a minimum energy for a structure with a (sc, sc) conformation and C2 symmetry, where sc denotes synclinal, or gauche. This structure corresponds to that observed. At a higher energy of 11.5 kJ mol?1 (4—31G) there is a structure with a (+sc, ?sc) conformation and Cs symmetry. The torsional modes corresponding to the a and b irreducible representations of the C2 point group are estimated to have frequencies of 280 and 265 cm?1, respectively.  相似文献   

14.
The crystal and molecular structure of the monoligand trimetallic complex [{Rh(C5Me5)}3Cl5np3]PF6 · 0.5 C3H8O (np3  tris(2-diphenylphosphinoethyl)-amine) have been established by a single-crystal X-ray diffraction study. The cation of the complex contains two Rh(C5Me5)Cl2 units each bound through the metal to one phosphorus atom of the ligand and a Rh(C5Me5)Cl group in which the rhodium is bound to the third phosphorus atom and to the nitrogen of the tetradentate ligand.The crystals are triclinic, space group P1, with cell dimensions a 28.598(8), b 13.757(4), c 10.748(3) Å, α 90.69(4), β 96.67(4), γ 99.71(4)°, Dc 1.38 g cm?3 for Z  2. The structure was solved by three dimensional Patterson and Fourier syntheses and refined by least-squares techniques to a final conventional R value of 0.098.  相似文献   

15.
The adsorption of C2H4 on W(100) has been studied by ultraviolet photoelectron spectroscopy with hν = 21.22 eV. The spectrum measured after in initial saturation exposure at 80 K exhibits structure which correlates well with energy levels recently calculated by Demuth and Eastman (DE) for sp3 rehybridized C2H4. Dehydrogenation of the adsorbate, either by subsequent heating to 295 K or direct adsorption at 295 K, yields a spectrum which correlates with DE's calculation for sp2 rehybridized C2H2. These results suggest that C2H4 and C2H2 may be distorted from their planar and linear structures respectively and that the CC bonds on these molecules are stretched by adsorption on W(100). Qualitative arguments suggest that the bonding site for both melecules is directly over a W atom and that the Dewar—Chatt model for πd bonding in organometallic compounds is applicable.  相似文献   

16.
It is shown that the N-lines in the luminescence spectra of the two spinels ZnAl2O4:Cr3+ and MgAl2O4:Cr3+ exhibit quite similar dependencies on chromium concentration, excitation frequency, and thermal treatment of the samples. While most of these lines are structure dependent, the line N4 at νR ? ν ≈ 400 cm?1 and two very weak lines are in both cases due to chromium-pairs. The exchange Hamiltonian Hex = JS1 · S2 + j(S1 · S2)2 used for the ground-state splitting is fitted by the parameters J = 40.9 cm?1, j = 1.5 cm?1 and J = 45.6 cm?1, j = 2.0 cm?1 for ZnAl-spinel and MgAl-spinel, respectively. The differences between the spectra of low-doped and high-doped samples are in both cases caused by the existence of a phonon sideband of the N4-line, which is in many respects similar to the well-known phonon side band of the R-line.  相似文献   

17.
Polarized Raman spectra (single crystal) at 300 K and infrared spectra (powder) at 300 and 77 K in the region 250–1000 cm?1 of a binary molybdate of terbium and europium have been recorded. Based on C2v symmetry, group theoretical analysis has been carried out and a vibrational assignment is proposed.  相似文献   

18.
The IR multiple photon excitation and dissociation of C2H5F and 1,1-C2H4F2 has been studied by monitoring vibrational fluorescence in the region 2000–4000 cm?1 following excitation with the focused output from a CO2 TEA laser.  相似文献   

19.
Rate coefficients and product-ion distributions for NH+n and ND+n (n = 0–4) with both C2H4 and C2D4 are presented. The use of the deuterated species allowed the fraction of each of the product ion types to be determined unambiguously. The data also demonstrate how the technique can be used to obtain information on the mechanisms of relatively complex ion/molecule reactions.  相似文献   

20.
Neutron inelastic scattering spectra of NaHC2O4, KHC2O4 crystals at 80 K have been recorded in the 2200-200 cm?1 range. The lithium acid salt was also studied at different temperatures. NIS spectra are compared to the corresponding infrared and Raman spectra and an assignment is proposed. Two strong bands near 1500 and 1100 cm?1 are assigned to δ(OH) and γ(OH) vibrations, respectively, while five weak bands below 900 cm?1 are associated with skeletal modes, mainly bending vibrations. The OH stretching vibration is not observed and is believed to be hidden by other bands; the peak intensity must be low because of its band width which is of the order of a few hundreds wavenumbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号